

PREPARED FOR: CEMEX 2365 IRON POINT ROAD, SUITE 120 FOLSOM, CALIFORNIA 95630

PREPARED BY: GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742

GEOCON PROJECT NO. S1264-05-01

MARCH 2017

GEOCON CONSULTANTS, INC.

GEOTECHNICAL ENVIRONMENTAL MATERIAL

Project No. S1264-05-01 March 3, 2017

VIA ELECTRONIC MAIL

Deborah G. Haldeman Regional Natural Resources Manager Cemex 2365 Iron Point Road, Suite 120 Folsom, California 95630

Subject: GEOTECHNICAL INVESTIGATION / SLOPE STABILITY ANALYSIS CEMEX ELIOT – ARROYO DEL VALLE REALIGNMENT AT LAKE B ALAMEDA COUNTY, CALIFORNIA

Ms. Haldeman:

In accordance with your authorization of our proposal (Geocon Proposal No. LS-16-275, dated November 17, 2016), we have performed a geotechnical evaluation for the proposed realignment of a portion of the Arroyo del Valle (the Arroyo) at the CEMEX Eliot Quarry in Alameda County, California.

The accompanying report presents our findings, conclusions, and recommendations regarding geotechnical aspects of slope construction as presently proposed. Based on the results of our study, the proposed project is feasible from a geotechnical viewpoint provided the recommendations of this report are incorporated into the design and construction of the project.

Please contact us if you have any questions regarding this report or if we may be of further service.

Respectfully Submitted,

GEOCON CONSULTANTS, INC.

Jeremy J. Zorne, PE, GE Senior Engineer

Ronald E. Loutzenhiser, PE, GE Senior Engineer/QA Review

John C. Pfeiffer, PG, CEG Senior Geologist

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION	1
2.0	SITE AND PROJECT INFORMATION	2
3.0	SOIL AND GEOLOGIC CONDITIONS. 3.1 Regional and Site Geology	4 4 6 6
4.0	GROUNDWATER	6
5.0	SEISMICITY	7
6.0	 SEEPAGE AND SLOPE STABILITY ANALYSES	8 8 10 10 13 14 15
7.0	CONCLUSIONS 7.1 Seepage 7.2 Settlement 7.3 Slope Stability 7.4 Pit Capture Potential	16 16 16 16 16
8.0	RECOMMENDATIONS 8.1 Slope Geometry 8.2 Materials for Fill 8.3 Wet Weather Grading Conditions 8.4 Grading/Embankments/Slopes 8.5 Slope Maintenance	17 17 17 17 18 19
9.0	FURTHER GEOTECHNICAL SERVICES 9.1 Plan Review 9.2 Testing and Observation Services	20 20 20
10.0	LIMITATIONS AND UNIFORMITY OF CONDITIONS	20
11.0	REFERENCES	22
FIG	URES Figure 1 Vicinity Map	

Figure 1, Vicinity Map Figure 2, Proposed Project Overview Figure 3, Site Plan Figure 4, Cross-Section A-A'

SLOPE STABILITY EVALUATION

PHOTOS

Photos 1 through 13

TABLE OF CONTENTS (Continued)

APPENDIX A

FIELD EXPLORATION Figure A1, Key to Logs Figures A2 through A11, Logs of Test Pits (TP1 through TP10) Exploratory Boring Logs, BH2013-01 and BH2013-7 through -13 (KANE GeoTech, Inc., 2013)

APPENDIX B

LABORATORY TESTING PROGRAM Figure B1, Summary of Laboratory Results Figure B2, Atterberg Limits Figure B3, Grain Size Distribution Figures B4 and B5, Triaxial Shear Strength – CU Test with Pore Pressure Measurements (Staged) Figure B6, Triaxial Shear Strength – UU Test (staged) Figure B7, Hydraulic Conductivity Figure B8, Compaction Test Report Geo-Logic Associates – Lab Report (January 26, 2017) KANE GeoTech, Inc. – Material Properties (Lab Test Results) Berlogar Stevens & Associates – Lab Test Results (October 30, 2012)

APPENDIX C

SLOPE STABILITY ANALYSES

1.0 INTRODUCTION

This report presents results of our geotechnical investigation for the proposed realignment of a portion of the Arroyo del Valle (ADV) at the CEMEX Eliot Quarry in Alameda County, California. The approximate site location is shown on the Vicinity Map, Figure 1.

The purpose of our study was to evaluate subsurface conditions at the site based on literature review, targeted subsurface exploration, and laboratory testing; and to evaluate the stability of slopes along the proposed realignment of the ADV channel adjacent to the Lake B mining pit under static and dynamic (seismic) conditions. The results of this evaluation will be used in developing an amended *Reclamation Plan* and other required regulatory permits for the project.

To prepare this report, we performed the following scope of services:

- Reviewed published geologic maps, geotechnical reports and other pertinent literature pertaining to the site. A list of referenced material is presented in Section 11.0 of this report.
- Attended a kickoff meeting at the site with the project team on December 20, 2016. The purpose of the meeting was to discuss project specifics and develop a geotechnical exploration plan for the project. Another purpose of the meeting was to review project limits and determine equipment access.
- Marked out exploratory excavation locations for subsequent utility clearance and notified subscribing utility companies via Underground Service Alert (USA) a minimum of 48 hours prior to performing exploratory excavations at the site.
- Performed detailed geologic mapping throughout the ADV realignment area by a California Certified Engineering Geologist (CEG).
- Performed ten exploratory test pits (T1 through T10) using track-mounted Komatsu 240 and Caterpillar 325 excavators equipped with 36-inch wide buckets. Test pit depths ranged from approximately 6¹/₂ to 20 feet.
- Obtained representative soil samples from the test pits.
- Logged the test pits in accordance with the Unified Soil Classification System (USCS).
- Upon completion, backfilled the test pits with the excavated material.
- Remolded (fabricated) soil samples in our laboratory and performed testing to evaluate index properties, shear strength, and permeability characteristics
- Analyzed the field and laboratory testing data, performed numerical slope stability analyses, and prepared this report with our findings, conclusions, and recommendations. This report also includes recommended embankment geometry, fill/embankment material specifications, and earthwork recommendations for the project.

Details of our field exploration program including test pit logs are presented in Appendix A. A general overview of the proposed project is presented as Figure 2. Approximate locations of subsurface explorations (current and previous) are shown on Site Plan, Figure 3. A generalized subsurface

cross-section (Cross-Section A-A') is presented as Figure 4. Site Photographs are presented as Photos 1 through 13. Details of our laboratory testing program and test results are summarized in Appendix B. Details of our slope stability analyses are summarized in Appendix C.

2.0 SITE AND PROJECT INFORMATION

To aid in preparing this report, we reviewed the following key documents related to the project (other references are listed in Section 11.0 of this report):

- 1. Concept Design for the Arroyo Del Valle Realignment at Lake B, Alameda County, California, Surface Mine Permit -23, CA MINE 91-01-0009, prepared by Brown and Caldwell, May 2016.
- 2. *Cemex Eliot Quarry Geotechnical Characterization Report*, Alameda County, California, prepared by KANE GeoTech, Inc., (Project No. GT13-16), May 7, 2015 (46 pages).
- 3. *Cemex Eliot Quarry Geotechnical Characterization Appendices*, Alameda County, California, prepared by KANE GeoTech, Inc., (Project No. GT13-16), May 7, 2015 (3,795 pages).
- 4. *Cemex Eliot Quarry Lake B Evaluation Report, Alameda County, California*, prepared by KANE GeoTech, Inc., (Project No. GT13-16), May 7, 2015.

CEMEX Construction Materials Pacific, LLC (CEMEX) owns and operates the Eliot Facility, a sand and gravel mining operation located between the cities of Pleasanton and Livermore within the unincorporated area of Alameda County, California (Vicinity Map, Figure 1). CEMEX is seeking approval to amend its existing *Reclamation Plan*, which was originally approved in 1987 under *Surface Mining Permit 23* (SMP-23). In December 2016, an updated application for SMP-23 was submitted to the Alameda County Community Development Agency. The *Amendment* presents options for mining Lake B to an elevation of 150 feet above mean sea level (MSL), which is approximately 100 feet deeper than the currently mined elevation. Under the preferred option outlined in the *Amendment*, CEMEX proposes to move ADV south along a new alignment parallel to Vineyard Avenue to allow for expansion of mining at Lake B. As part of the project, the ADV corridor in this area will be restored and enhanced by creating aquatic habitat for vertebrates and native plant species. An overview of the proposed project is presented as Figure 2.

The *Concept Design* prepared by Brown & Caldwell (Ref. 1) provides conceptual details for the proposed realignment of the ADV. The *Lake B Evaluation Report* and associated appendices (Refs. 2 through 4) prepared by KANE GeoTech, Inc. (KANE) comprises the geotechnical assessment of slope stability related to the currently approved Lake B mining project. These documents have been reviewed and accepted by Alameda County and the County's geotechnical review consultant (ENGEO/Rockridge Geotechnical) and will undergo further review pursuant to the California Environmental Quality Act (CEQA). For the purposes of this report, the KANE documents (Refs. 2 through 4) are collectively referred to as the "*KANE Slope Stability Evaluation*."

Based on our review of the current *Concept Design* (Ref. 1), the proposed realigned ADV channel will extend through previously mined areas, quarry ponds (Topcon Ponds), and currently undisturbed (unmined) areas. The ADV realignment will require cuts and fills along various portions of the new channel. The existing ADV alignment, proposed ADV realignment, and approximate locations of cuts and fills required for the project are shown on the Site Plan, Figure 3. A typical profile view (cross-section) of the current and proposed conditions is presented as Cross-Section A-A', Figure 4. Photographs of the site are presented as Photos 1 through 13.

As shown on the Site Plan, Figure 3, the ADV realignment corridor is approximately 5,800 feet long. The channel invert elevation at the upstream and downstream ends of the corridor is approximately 390 feet and 360 feet MSL, respectively. The resulting average slope is approximately 0.56 percent. In general, cut and fill slopes associated with the channel realignment will be 2H:1V or flatter. The approximate elevation of Vineyard Avenue adjacent to the project is 430 feet MSL. The existing ADV (Photo 5) is located between the Quarry Ponds (Photos 7 and 8) and Lake B (Photo 9). The ADV is separated from Lake B by an irregular-shaped, minor embankment with a top elevation of approximately 390 feet MSL.

Fill for the realigned ADV channel embankment (where needed) will be derived from cut areas along the channel alignment as well as local borrow sources. At this time, two borrow areas outside of the ADV realignment area have been identified. Borrow Area #1 primarily consists of the intact (native) lean clay deposit exposed in the current bottom of the Lake B mining pit. Borrow Area #2 is located north of Lake B and primary consists of "silt" materials derived from onsite aggregate processing.

After the Arroyo is realigned, the Lake B mining pit will be deepened and extended adjacent to the channel. The slope adjacent to the channel will be inclined at 2H:1V (horizontal:vertical) to an overall depth of approximately 220 feet (maximum bottom elevation approximately +150 feet MSL).

The KANE *Slope Stability Evaluation* included subsurface exploration (exploratory borings), laboratory testing, and stability analyses of excavated (cut) mining slopes of Lake B. The *Slope Stability Evaluation* analyzed the stability of mining slopes under normal and dry hydrologic conditions under both static and seismic conditions. The evaluation also considered an unlikely rapid-drawdown condition. The results of the evaluation concluded that mining slopes inclined at 2H:1V or flatter are globally stable under static and seismic conditions under each of the various operational conditions. Since the previous project did not include significant fill embankments, the investigation did not evaluate potential fill slopes/constructed embankments at the site.

The purpose of our study was to evaluate subsurface conditions along the proposed ADV realignment (based on a review of existing data and targeted acquisition of new data), determine pertinent geotechnical parameters, and evaluate slope stability and seepage conditions for the

proposed channel realignment as presently proposed. Our study focuses on developing fill/embankment material specifications, placement zones, embankment geometry, and earthwork recommendations for the project.

3.0 SOIL AND GEOLOGIC CONDITIONS

We identified soil and geologic conditions at the site by observing exploratory excavations, performing a geologic reconnaissance, and reviewing various geotechnical, geological, and hydrogeological reports and documents prepared for the site and vicinity (referenced in Section 11.0). Soil descriptions provided below include the USCS symbol where applicable. A general subsurface cross-section showing site geology is presented as Figure 4. Photos of typical soil conditions are presented as Photos 1 through 13.

3.1 Regional and Site Geology

The site is located near the center of the east-west trending Livermore-Amador Valley at the approximate basin axis. The Livermore-Amador Valley is a tilt-block basin bounded on the south side by the Verona Thrust Fault and Las Positas Fault system. The valley was filled with late Tertiary and Quaternary alluvial deposits. The Livermore-Amador Valley is partially filled with alluvial fan, stream, and lake deposits, collectively referred to as alluvium which consists of interbedded/intermixed gravel, sand, silt, and clay. At the site, coarse alluvial fan deposits are the target of extensive aggregate mining in the area.

The alluvium in the area includes three major units, listed from youngest to oldest (top to bottom): Quaternary alluvium, Upper Livermore Gravels, and Lower Livermore Gravels (Barlock 1989). The characteristics of the individual units are similar (mixtures and layers of sand, silt, clay, gravel, and small cobble). The division between individual units is not distinct and generally coincides with gradual grain size transitions. For the purposes of this report, the natural deposits at the site are collectively termed "alluvium."

3.2 Subsurface Explorations

To evaluate subsurface conditions pertinent to the ADV realignment and adjacent Lake B mining pit, we reviewed selected exploratory borings performed as part of the previous KANE *Slope Stability Evaluation*. The borings were performed in April 2013 using a Becker Hammer drill rig. Table 3.2A summarizes the details of the borings.

Boring ID	Date Boring		Approxim Elev (feet	Approximate Boring Elevations (feet MSL)		Groundwater	
		(feet)	Тор	Bottom	Depth (feet)	Elevation (feet MSL)	
BH2013-01	4/12/2013	280	416	136	230	186	
BH2013-07	4/6/2013	300	392	92	65	327	
BH2013-08	4/4/2013	300	401	101	70	331	
BH2013-09	4/2/2013	200	300	100	50	250	
BH2013-10A	4/14/2013	50	304	254	2	302	
BH2013-10B	4/14/2013	50	304	254	4	300	
BH2013-11	4/5/2013	220	320	100	5	315	
BH2013-12	4/9/2013	280	376	96	5	371	
BH2013-13	4/11/2013	300	412	112	60	352	

TABLE 3.2ASUMMARY OF PREVIOUS EXPLORATIONS (KANE 2013)

To supplement this subsurface information, we excavated ten exploratory test pits (TP1 through TP10) on December 22, 2016 using Komatsu 240 and a Caterpillar 325 excavators equipped 36-inch-wide buckets. We also performed a detailed site reconnaissance on December 22 and 23, 2016. Details of our test pits are summarized in Table 3.2B.

Test Pit ID	General Area	Test Pit Depth	Approximate Test Pit Elevations (feet MSL)		Groundwater	
		(feet)	Тор	Bottom	Depth (feet)	Elevation (feet MSL)
TP1	Borrow Area #2 ("Silt" Area)	20	382	362		
TP2	Borrow Area #2 ("Silt" Area)	20	382	362		
TP3	Borrow Area #2 ("Silt" Area)	20	382	362		
TP4	Borrow Area #1 ("Clay" Area)	20	304	284	18	286
TP5	Borrow Area #1 ("Clay" Area)	6.5	294	287.5		
TP6	ADV Realignment – Cut Area	8	410	402		
TP7	ADV Realignment – Cut Area	12	422	410		
TP8	ADV Realignment – Cut Area	9	422	413		
TP9	ADV Realignment – Cut Area	12	400	388		
TP10	ADV Realignment – Cut Area	10	372	362	6	366

 TABLE 3.2B

 SUMMARY OF TEST PIT EXPLORATIONS (GEOCON 2016)

Approximate locations of the borings and test pits are shown on the Site Plan, Figure 3. Logs of the explorations are presented in Appendix A.

3.3 Fill

We encountered fill within TP1 through TP3 performed within Borrow Area #2 containing "silt" deposits resulting from onsite aggregate processing (Photos 10 and 11). Based on our test pits, the fill generally consists of a heterogeneous mixture of sandy lean clay (CL) with gravel and some small cobble (Photo 10). Gravel and small cobble is typically rounded and consists of maximum particle sizes of approximately 4 inches or less. The fractions of sand, silt, clay, and gravel varies significantly throughout the deposit. Based on laboratory tests performed on a composite sample, the fractions were approximately 55% fines (clay/silt), 25% sand, and 20% gravel.

3.4 Alluvium

We encountered alluvium in Test Pits TP4 through TP10. The alluvium generally consisted of "gravel" deposits and "clay" deposits.

<u>Gravel Deposits</u>: These deposits generally consist of subrounded to rounded gravel and small cobble (generally 4 inches and smaller in maximum dimension) in sand, silt and clay matrix (Photos 3 and 4). The fractions of sand, silt and clay vary throughout the gravel deposits (Photo 13). USCS classifications for this material include, but are not limited to: clayey gravel (GC), well-graded gravel with silt, clay, and sand (GW-GC), clayey sand with gravel (SC), and well-graded sand with gravel (SW-SM). Some of the intact gravel deposits are weakly to moderately cemented, as evidenced by near-vertical gravel exposures throughout the project area (Photos 1, 2, 3 and 6).

<u>Clay Deposits</u>: These deposits generally consist of sandy lean clay (CL) with little gravel (Photo 12). Gravel within the clay is typically subrounded to rounded and generally 1¹/₂ inches and smaller in maximum dimension. This material exhibits low to moderate plasticity and stiff to very stiff consistency.

Subsurface conditions described in the previous paragraphs are generalized. The exploration logs included in Appendix A detail soil type, color, moisture, consistency/relative density, and USCS classification of the materials encountered at specific locations and elevations.

4.0 GROUNDWATER

As shown in Tables 3.2A and 3.2B, groundwater was encountered at various depths within the borings and test pits. A detailed discussion of hydrogeologic (groundwater) conditions in the project area is provided in: *Second Update – Hydrology and Water Quality Analysis Report for the Amendments to the Cemex Eliot Quarry SMP-23 Reclamation Plan, Alameda County, California*, prepared by EMKO Environmental, Inc., December 6, 2016 (EMKO *Hydrology Report*).

In general, groundwater levels (depths/elevations) in the project area are strongly influenced by the water level in the ADV, which recharges groundwater in the local area. However, groundwater levels are also altered by dewatering/pumping operations associated with the active mining in the area. As outlined in the referenced Hydrology and Water Quality Analysis Report, the long-term water-level cycles are related to climatic changes such as wet periods and drought periods. Annual cycles are due to recharge during the wet season and extraction during the dry season. Peak water levels generally occur between March and May and minimum water levels generally occur in August or September. The long term climatic cycles can result in water-level changes of up to 100 feet. The annual cycles typically range in magnitude from about 15 feet to 40 feet.

Based on information from EMKO (email communication from Andrew Kopania, January 9, 2017), at the central portion of the ADV realignment area (approximate channel invert elevation of 380 feet MSL), seasonal high groundwater elevation is expected to be approximately coincident with the ADV channel invert elevation of 380 feet MSL and seasonal low groundwater elevation is expected to be approximately 366 feet MSL.

We note that fluctuations in the level of groundwater may occur due to variations in rainfall, temperature, and other factors. Depth to groundwater can also vary significantly due to local pumping, irrigation practices, and seasonal fluctuations in the ADV.

5.0 SEISMICITY

Based on our research, analyses, and observations, the site is not located on any known "active" earthquake fault trace. In addition, the site is not contained within an Alquist-Priolo Earthquake Fault Zone. Therefore, we consider the potential for ground rupture due to onsite active faulting to be low.

In order to determine the distance of known active faults within 25 miles of the site, we used the computer program *EQFAULT*, (Version 3, Blake, 2000). Principal references used within *EQFAULT* are Jennings (1975), Anderson (1984) and Wesnousky (1986). Results are summarized in Table 5.

REGIONAL ACTIVE FAULTS					
Fault Name	Distance from Site (miles)	Maximum Moment Magnitude, M _w			
Calaveras (No. of Calaveras Res.)	3.8	6.8			
Greenville	8.7	6.9			
Hayward (South)	9.8	6.9			
Hayward (Total Length)	9.8	7.1			
Great Valley – Segment 6	10.6	6.7			
Great Valley – Segment 7	13.2	6.7			
Hayward (SE Extension)	14.4	6.4			
Hayward (North)	16.3	6.9			
Calaveras (No of Calaveras Res.)	16.5	6.2			
Concord – Green Valley	16.7	6.9			

TABLE 5 REGIONAL ACTIVE FAULTS

We used the United States Geological Survey (USGS) web-based application 2008 Interactive *Deaggregations* to estimate the peak ground acceleration (PGA) and modal (most probable) magnitude associated with a 475-year return period (typical design-level earthquake event). This return period corresponds to an event with 10% chance of exceedance in a 50-year period. The USGS estimated PGA is 0.49g and the modal magnitude is 6.6 for Seismic Site Class D (stiff soil profile).

While listing PGA is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site.

6.0 SEEPAGE AND SLOPE STABILITY ANALYSES

We evaluated the stability of the proposed ADV realignment embankment fill and adjacent Lake B mining slopes based on infiltration/hydraulic conductivity assessments, derived soil strength parameters, and the proposed slope configurations presented on the conceptual design plans. The following sections provide details for the derivation of parameters used in our analyses.

Slope stability analyses evaluate the ratio of the resisting forces (predominantly soil shear strength) to the driving forces that would cause a slope failure (predominantly gravity, soil unit weight, slope/strata geometry). The ratio of the summation of driving forces divided by the summation of resisting forces is termed Factor of Safety (FOS). A FOS of 1.0 indicates that the driving and resisting forces are equal and the slope is a state of impending failure/movement. A FOS greater than 1.0 indicates the presence of reserve strength; however, does not guarantee that failure will not occur. Rather, the probability of failure generally decreases as the FOS increases. Typical minimum required FOS for slope stability analyses are summarized in Table 6.0.

Analysis Condition	Typical Minimum Factor of Safety (FOS)			
End of Construction / Temporary Conditions ¹	1.3^{2}			
Permanent, Long-Term (Steady Seepage)	1.5^{2}			
Seismic / Earthquake	1.0 to 1.2^3			
1. Temporary conditions include mining and/or maintenance.				
2. Minimum FOS per EM 1110-2-1902 "Engineering and Design – Slope Stability," US Army Corps of Engineers, October 2003. We note that a minimum acceptable seismic FOS of 1.0 was used for previous slope stability evaluations at the site.				
3. Typical minimum FOS range per commonly accepted engin	eering practice.			

 TABLE 6.0

 MINIMUM REQUIRED FACTORS OF SAFETY – SLOPE STABILITY ANALYSES

6.1 Current Conditions / Previous Stability Analyses

Currently, the ADV borders the existing south mining slope of Lake B. The ADV and mining pit are separated by an irregular-shaped, minor embankment with a top elevation of approximately 390 feet MSL. The current ADV natural channel is underlain by braided, coarse alluvial sediments

primarily comprised of sand and gravel. Based on the geologic cross-sections and information contained in the referenced EMKO *Hydrology Report*, the clay layers in the area are relatively thin, laterally discontinuous, and do not function as aquitards. Therefore, there is direct hydraulic communication between the surface water in the ADV and groundwater in the immediate area. As such, in the absence of dewatering and pumping, at any given location along the project alignment, the water level in Lake B would be nearly consistent with the surface water level in the ADV.

The previous KANE *Slope Stability Evaluation* analyzed global slope stability under static and seismic conditions, including the proposed Lake B mining slope adjacent to the current ADV (KANE's Profile 4). KANE's stability analyses were performed using a typical 2H:1V cut slope inclination to a maximum mining depth of 150 feet MSL. The stability analyses considered both high and low groundwater and lake water conditions as well as a rapid-drawdown condition in Lake B. The stability analyses were performed using the GeoStrucural Analysis slope stability software (Version 5.17.10.0, Fine Civil Engineering Software). The results of the evaluation concluded that mining slopes inclined at 2H:1V or flatter are globally stable under static and seismic conditions under each of the various operational conditions. Since the previous project did not include significant fill embankments, the investigation did not evaluate potential fill slopes/constructed embankments at the site.

For this study, we analyzed slope stability using the computer program SLOPE/W, Version 7.22 (Geo-Slope International) for static and seismic conditions using the Bishop method of limit-equilibrium analysis considering circular failure modes, which were previously determined to be the most critical slope failure mode (versus polygonal or wedge failures). Since the previous slope stability analyses for Lake B were performed using different software, we re-analyzed "Profile 4" (southeast slope of Lake B adjacent to the current ADV) previously performed by KANE in order to calibrate the two studies so that meaningful comparisons can be made. Table 6.1 summarizes the results.

Condition	Analyst	Calculated Minimum Factor of Safety	
Condition	1 inter y 50	Static	Seismic
Circular Failure, SE Slope, Mined to 150-feet MSL, Average	KANE GeoTech, Inc.	1.8	1.2
Groundwater/Lake Water Conditions	Geocon Consultants, Inc.	1.9	1.2

TABLE 6.1 SLOPE STABILITY ANALYSIS CONFIRMATION – LAKE B PROFILE 4

As shown in Table 6.1, our stability analysis results are essentially the same as the previous KANE analysis. Therefore, we consider our analytical methods to be substantially equivalent to the previous analyses.

6.2 Geometry for Stability Analyses

Our stability analyses were performed using the geometry at Cross-Section A-A' (Figure 4) located within the central portion of the project alignment as shown on the Site Plan, Figure 3. The slope configurations and geometry at this location are based on existing and proposed topography provided by Spinardi Associates, December 2016. Cross-Section A-A' is considered to be representative of the "worst case" slope conditions along the project alignment because it includes the most significant fills (Topcon ponds) as well as the new embankment fill on the north side of the new ADV channel adjacent to the Lake B mining pit, and also represents a location with a minimal setback between the realigned ADV and adjacent mining slope. Most other locations along the ADV realignment will be formed either at-grade or by cuts/excavations in intact, native materials. These conditions are consistent with those that have already been evaluated as part of the previous KANE *Slope Stability Evaluation*.

6.3 Seepage/Groundwater/Surface Water Conditions

As discussed previously, there is direct hydraulic communication between the surface water in the ADV and groundwater in the immediate area. As such, in the absence of dewatering and pumping, the water level in Lake B would be consistent with the surface water level in the ADV. At the design profile for the project (Cross-Section A-A'), seasonal high groundwater elevation is expected to be approximately coincident with the ADV channel invert elevation of 380 feet MSL and seasonal low groundwater elevation is expected to be approximately 366 feet MSL.

To gain an understanding of general groundwater flow (seepage) conditions in the project area, we reviewed results of field infiltration testing performed at the site by Balance Hydrologics and EMKO. Details and results of the testing are summarized in: *Memo – Infiltration Tests of Native and Spoil Soil Along Reach B, Arroyo del Valle, CEMEX Eliot Facility,* Balance Hydrologics, Inc. and EMKO Environmental Inc., May 13, 2016. The goal of the infiltration testing was to evaluate the infiltration rates of native soil and spoil material in terms of their suitability for use as construction materials for the reconstructed ADV channel. A secondary objective was to provide a quantitative assessment of the potential change in the rate of percolation from the existing stream bed compared to the realigned stream bed, and the qualitative implications for seepage and slope stability along the south slope of the Lake B mining pit. Field infiltration tests were performed using a double-ring infiltrometer apparatus following methods outlined by the United States Geological Survey (USGS, 1963). Infiltration tests were performed at four locations, two in native soil material (N1 and N2) along the riparian corridor of Reach-B, and two on spoil soil material (S1 and S2). Approximate test locations are shown on the Site Plan, Figure 3. Field infiltration test results are summarized in Table 6.3A.

Test Leastion	Surface Infiltration Rates (min/inch)					
Test Location	20 minutes	30 minutes	1 hour	12 hours		
N1	13.47	11.40	8.58	3.09		
N2	3.43	3.11	2.62	1.43		
S1	0.59	0.46	0.31	0.07		
S2	1.91	1.61	1.20	0.42		

TABLE 6.3A INFILTRATION RATES

The field infiltration test results generally indicated that infiltration rates for the spoil soil material were less (slower) then those observed in native soil materials. Balance/EMKO concluded that infiltration rates following the ADV channel reconstruction should be similar to or slower than current rates. Therefore, infiltration of water through the realigned ADV channel would not steepen the groundwater gradient toward the south edge of Lake B, would not increase the groundwater elevation at the south edge of Lake B, and would not increase the rate of seepage into the south face of Lake B. Surface infiltration testing performed generally evaluates vertical movement of water through an unsaturated medium. To further evaluate seepage conditions, we reviewed previous testing/analyses to evaluate vertical and horizontal saturated hydraulic conductivity. Table 6.3B summarizes saturated hydraulic conductivity values for the native gravels at the site.

TABLE 6.3B SATURATED HYDRAULIC CONDUCTIVITY

	Saturated Hydraulic Conductivity		
Material	Vertical (k _y)	Horizontal (k _x)	K_y/k_x
Native GRAVELS	3.2 x 10 ⁻⁴ cm/sec	4.3 x 10 ⁻³ cm/sec	0.07

Vertical saturated hydraulic conductivity (k_y) of the native gravels is based on in-situ field testing (pump tests, slug tests) as outlined in the *Technical Memorandum #2 – Hydraulic Conductivity of Upper and Lower Gravels*, prepared by Tim Sneddon, December 10, 2004. The average horizontal hydraulic conductivity (k_x) of the native gravels is based on information obtained from Section 3.2 of the *EMKO Hydrology Report*. The calculated ratio of vertical to horizontal hydraulic conductivity (k_y/k_x) is approximately 0.07 which is generally consistent with the typical value 0.1 for this type of alluvial material and compacted engineered fill.

We performed laboratory hydraulic conductivity testing on remolded soil samples to evaluate hydraulic conductivity properties of soil in a compacted state. We fabricated samples of the clay and gravels (the likely source of fill for the ADV realignment) and performed laboratory hydraulic conductivity testing in accordance with ASTM D5084. Test results are summarized in Table 6.3C.

	Saturated Hydraulic Conductivity				
Material	Vertical ¹ (k _y)	Horizontal ² (k _x)	K _y /k _x		
Proposed Fill - CLAY (remolded)	5.1 x 10 ⁻⁶ cm/sec	5.1 x 10 ⁻⁵ cm/sec	0.1		
Proposed Fill - GRAVEL (remolded)	4.3 x 10 ⁻⁶ cm/sec 4.3 x 10 ⁻⁵ cm/sec		0.1		
Notes: 1. Based on laboratory hydraulic conductivity testing performed on remolded samples in accordance with ASTM D5084. Samples were remolded to approximately 90% relative compaction near optimum moisture content per ASTM D1557. 2. Horizontal hydraulic conductivity estimated based using a Ky/Ky ratio of 0.1.					

TABLE 6.3C SATURATED HYDRAULIC CONDUCTIVITY

A comparison of the hydraulic conductivity values presented in Tables 6.3B and 6.3C show that the remolded clay and gravel samples have lower (slower) hydraulic conductivity than the native gravel deposits. This further substantiates the conclusion that infiltration of water through the realigned ADV channel would not steepen the groundwater gradient toward the south edge of Lake B, would not increase the groundwater elevation at the south edge of Lake B, and would not increase the rate of seepage into the south face of Lake B to cause an adverse seepage and slope stability condition. Based on the above discussion and consultation with EMKO Environmental, Table 6.3D summarizes the surface water and groundwater elevations used in our analyses.

Case	Condition	Water Elevation in ADV (Feet) ²	Groundwater Elevation at Lake B Slope Face (Feet)	Lake B Water Elevation (Feet)			
		Temporary Operation	onal Conditions				
T-1	100-Year Flow	387.0	At Toe (150.0)	$150.0 (Dewatered)^3$			
T-2	Typical Flow	381.5	At Toe (150.0)	$150.0 (Dewatered)^3$			
T-3	Low Flow	380.5	At Toe (150.0)	150.0 (Dewatered) ³			
	Permanent Operational Conditions						
P-1	100-Year Flow	387.0	380.0	380.0			
P-2	Typical Flow	381.5	370.0	370.0			
P-3	Low Flow	380.5	366.0	366.0			
<u>Notes:</u>	Approximate Project Sta. 40)+75. average ADV low-flow	v channel invert elevation an	proximately 380 feet MSL.			

TABLE 6.3D SURFACE WATER AND GROUNDWATER ELEVATIONS FOR ANALYSIS¹

Information per EMKO Environmental, January 9, 2017.

2.

Dewatering drawdown assumed to occur at a rate such that the adjacent groundwater level draws down consistent 3. with the Lake B pool (e.g. no rapid drawdown condition resulting in undrained slopes).

We note that other surface water/groundwater elevation conditions are possible; however, the conditions listed in Table 6.3D effectively captures the likely range of critical temporary and permanent (long-term) operational conditions for the project. For the purposes of this report, Cases T-1, T-2 and T-3 represent temporary operational conditions, such as during mining and/or maintenance and the Cases P-1, P-2, and P-3 represent permanent (long-term), operational conditions. In our analyses, we assumed a "straight line" groundwater gradient between the surface water elevation in the ADV and the Lake B water elevation. This assumption is reasonable considering that the true gradient surface would be slightly curved, although relatively flat based on the k_y/k_x ratio.

6.4 Material Parameters for Stability Analyses

We selected material parameters for our slope stability analyses based on our review of the referenced previous geotechnical studies at the site, results of our test pits, laboratory testing, published correlations, engineering judgment, and experience.

At this time, we anticipate that the borrow material to be used for fill along the project alignment will consist of (1) "Gravels" derived from cut areas along the ADV realignment, (2) "Clay" excavated from the current bottom of Lake B (Borrow Area #1) and/or (3) "Silt" materials derived from onsite aggregate processing and stockpiled north of Lake B. Table 6.4A provides a summary of soil properties for each of these materials based on our laboratory testing program. Complete laboratory test results are presented in Appendix B.

Property / Parameter		"GRAVELS"	"CLAY"	"SILT"	
Percent Gravel (larger than No. 4 Sieve)		17.7% to 58.5%	11.6%	18.3%	
Percent Sand (between No. 4 and No. 200 Sieves)		34.6% to 43.2%	33.5%	26.5%	
Percent Fines (Silt/Clay) (Fines Sieve)	r than No. 200	6.9% to 39.1%	54.8%	55.2%	
Liquid Limit			31%	31%	
Plastic Limit			14%	13%	
Plasticity Index			17%	18%	
USCS Soil Classification		(SC/SM) to (GC/GM)	CL	CL	
Total Unit Weight (at 90% relative compaction)		134 pcf	126 pcf		
Optimum Moisture Co	ontent	8.5%	10%		
Total Cohesion, C	Unsaturated		2,550 pcf		
Total Friction Angle, ϕ Conditions			25°		
Effective Cohesion, C Saturated		40 to 160 pcf	150 pcf		
Effective Friction Angle, ϕ Conditions		23° to 37°	32°		
Saturated Hydraulic Conductivity		3 x 10 ⁻⁵ to 4.3 x 10 ⁻⁶ cm/sec	5.1 x 10 ⁻⁶ cm/sec		

TABLE 6.4A SOIL PROPERTIES – PROPOSED FILL MATERIALS (REMOLDED)

Shear strength parameters for the gravels were determined by performing large box (12-inch square) direct shear testing on selected saturated, remolded specimens. The specimens tested were obtained from the recent alluvium in the proposed ADV realignment and is considered representative of the "worst case" gravel material since it contained nearly 40% fines (silt and clay). The test results represented the lower-bound shear strength parameters presented in Table A. Based on conditions encountered in our test pits, we expect the majority of the gravel materials will contain less fines and will therefore have higher shear strength parameters. The upper-range shear strength parameters are based on direct shear testing performed by Berlogar Stevens & Associates on gravels obtained from the

Lake B slope in 2012. The lower-bound (slower) hydraulic conductivity of the gravels is based on laboratory hydraulic conductivity testing performed by Geo-Logic Associates in accordance with ASTM D5084. We estimated the upper bound (faster) hydraulic conductivity of the gravel deposit using correlations developed by Alyamani and Sen (1993). This estimated value is approximately one order of magnitude slower than the hydraulic conductivity of the natural gravel deposits presented in Table 6.3B.

Total and effective shear strength parameters and hydraulic conductivity of the "clay" to be potentially used as fill are based on the results of laboratory triaxial shear strength testing and hydraulic conductivity testing on remolded test specimens. Material sample specimens were remolded in the laboratory to approximately 90% relative compaction and at least 2% above optimum moisture content per ASTM D1557. As shown in Table 6.4A, the physical properties for the "clay" and "silt" materials are very similar; therefore, we assume that the shear strength parameters would also be similar.

Based on the above discussion, Table 6.4b provides a summary of the shear strength parameters used in our stability analyses for both fill and native soils.

SOIL PARAMETERS FOR STABILITY ANALYSES							
Material	Total Unit Weight (pcf)	Cohesion, C (psf)	Friction Angle, ø (degrees)				
Fill	125	160	23				
Native GRAVEL	134	200	45				
Native CLAY	125	1,400	24				

TABLE 64b

For the fill material, we assigned the lower-bound shear strength parameters for the remolded "gravel" material, which is expected to be very conservative for the fill material likely to be used on the project. This is further substantiated by the higher shear strength parameters measured for the remolded clay material. The shear strength parameters for native soils are consistent with the values used in the previous KANE Slope Stability Evaluation.

6.5 Seismic Forces for Dynamic (Seismic) Slope Stability Analysis

We analyzed dynamic (seismic) slope stability using a pseudo-static approach in which the earthquake load is simulated by "equivalent" static horizontal acceleration acting on the mass of the slope. This methodology is generally considered to be conservative and is most often used in current practice.

We understand that the adopted pseudo-static seismic coefficient for the project area at Lake B is 0.16. This value has been reviewed and accepted by Alameda County and their geotechnical review consultant and is applicable to the south, west, and north slopes of Lake B due to the lack of adjacent residential development and/or public infrastructure. We understand that a higher pseudo-static

coefficient (0.21) is applicable to the east slope of Lake B due to the proximity of improvements associated with Isabel Avenue (State Route 84). In our stability analyses, we used both pseudo-static coefficients as a sensitivity analysis check and found that using the higher coefficient (0.21) resulted in an approximate 10% to 15% reduction in the FOS against failure. We note that this magnitude of reduction still results in acceptable FOS against failure for the seismic case analysis.

6.6 Slope Stability Analyses and Results

We analyzed slope stability conditions within the "ADV embankment" and the adjacent Lake B slope. For the purposes of this report, the "ADV embankment" is defined as the new embankment fill separating the realigned ADV channel with the Lake B mining slope. "Global" failures for the Lake B mining slope are considered deep-seated failure surfaces that would extend into the ADV realigned channel. We analyzed slope stability under both temporary and permanent operations conditions as outlined in Section 6.3.

Tabulated results of our slope stability analysis (FOS against failure) for both ADV embankment and global (deep-seated) failures for temporary and permanent operational conditions are summarized in Tables 6.6A and 6.6B, respectively. Graphical representations of the potential critical failure surfaces and parameters used for each stability analysis are presented in Appendix C.

Case	Condition	Calculated Minimum Factor of Safety			
		ADV Embankment		Global (Deep-Seated)	
		Static	Seismic	Static	Seismic
T-1	100-Year Flow in ADV, Lake B Fully Dewatered	1.8	1.3	1.3	1.0
T-2	Typical Flow in ADV, Lake B Fully Dewatered	1.7	1.3	1.5	1.0
T-3	Low Flow in ADV, Lake B Fully Dewatered	1.7	1.2	1.5	1.0

 TABLE 6.6A

 SLOPE STABILITY ANALYSIS RESULTS – TEMPORARY CONDITIONS

TABLE 6.6B

SLOPE STABILITY ANALYSIS RESULTS – PERMANENT OPERATIONAL CONDITIONS					
Case	Permanent Condition	Calculated Minimum Factor of Safety			
		ADV Embankment		Global (Deep-Seated)	
		Static	Seismic	Static	Seismic
P-1	100-Year Flow in ADV, High Water Level in Lake B	1.6	1.1	2.3	1.3
P-2	Typical Flow in ADV, Typical Water Level in Lake B	1.6	1.2	2.2	1.3
P-3	Low Flow in ADV, Low Water Level in Lake B	1.8	1.3	2.2	1.3

7.0 CONCLUSIONS

Based on the results of our study, the proposed realignment of the ADV as presently proposed is geotechnically feasible provided the recommendations presented in this report are incorporated into the design and construction of the project.

Conclusions and recommendations provided in this report are based on review of referenced literature, analysis of data obtained from our field exploration, our laboratory testing program, and our understanding of the project at this time.

7.1 Seepage

Given that the proposed fill materials will exhibit lower (slower) hydraulic conductivity, infiltration through the realigned ADV channel should <u>not</u> steepen the groundwater gradient toward the south edge of Lake B, should <u>not</u> increase the groundwater elevation at the south edge of Lake B, and should <u>not</u> increase the rate of seepage into the south face of Lake B. Therefore, adverse seepage conditions are not expected.

7.2 Settlement

Generally, the proposed project includes placing fill in areas that were previously excavated and will not result in a significant increase in effective overburden pressure over the preexisting condition. Therefore, we do not expect significant post-construction, time-dependent settlement that would compromise the stability or performance of the embankments adjacent to the ADV.

7.3 Slope Stability

As outlined in Section 6.6, the calculated FOS against failure for the ADV embankment and global (deep-seated) failures of the Lake B slope meets or exceeds the minimum acceptable FOS outlined in Table 6.0 for both static and seismic conditions for both temporary and permanent operational conditions. Based on the results of our study, the proposed ADV embankment and Lake B mining slopes are considered adequately stable for static and seismic conditions under the anticipated temporary and permanent operational conditions.

7.4 Pit Capture Potential

In off-channel mining operations, "Pit capture" is a term to describe the process where the earthen material separating the mining pit from an adjacent watercourse is breached or overtopped by floodwaters, streambank erosion, and/or channel migration. Provided the embankment is not overtopped by floodwaters in the ADV and given the low potential for adverse seepage and slope instability, the potential for pit capture is low.

8.0 **RECOMMENDATIONS**

8.1 Slope Geometry

Based on the results of our slope stability analyses, all slopes for the project should be constructed at an inclination of 2H:1V or flatter. For the Lake B slope and any slopes exceeding 50 feet high, consideration should be given to providing a maintenance bench at the approximate mid-height of the slope to provide access for maintenance operations.

8.2 Materials for Fill

In general, excavated soils generated from cut operations along the ADV realignment are suitable for use as engineered fill/embankment construction provided they do not contain deleterious matter, organic material, or rock/cementations larger than 6 inches in maximum dimension. We anticipate that the majority of these materials will consist of gravel deposits. Based on the results of our investigation, the identified borrow materials ("clay" and "silt") are also acceptable for use as fill. However, we expect some variability in soil conditions throughout the area, particularly in the "silt" material (Borrow Area #2). Therefore, periodic sampling and laboratory testing should be performed to verify that the following properties outlined in table 8.2 are met.

Property / Parameter		Requirement		
Percent Gravel (lager than No. 4 Sieve)				
Percent Sand (between No. 4 and No. 200 Sieves)		25% Minimum		
Percent Fines (Silt/Clay) (Finer than No. 200 Sieve)		10% Minimum		
Liquid Limit		50 Maximum		
Plasticity Index		7 Minimum, 25 Maximum		
Acceptable USCS Soil Classifications		CL, SC, SC-SM, GC, GW-GC		
Total Unit Weight (at 90% relative compaction)		120 pcf Minimum		
Effective Cohesion, C	Seturated Canditions	150 pcf		
Effective Friction Angle, ϕ	Saturated Conditions	23°		
Saturated Hydraulic Conductivity		$1 \times 10^{-4} \text{ cm/sec}$ (or slower)		

TABLE 8.2 RECOMMENDED PROPERTIES FOR FILL

8.3 Wet Weather Grading Conditions

If grading occurs in winter or spring, surface soils will likely be wet. The contractor should be aware of the moisture sensitivity of clayey and fine-grained soils and potential compaction/workability difficulties.

Earthwork operations in wet weather conditions will likely be difficult with low productivity. Often, a period of at least one month of warm and dry weather is necessary to allow the site to dry sufficiently so that heavy grading equipment can operate effectively. Conversely, during dry summer and fall

months, dry clay soils may require additional grading effort (discing or other means) to attain proper moisture conditioning.

In-situ moisture content of the "clay" and "silt" soil is significantly higher than optimum moisture content. Due to the fine-grained nature of the soils and in-situ moisture contents well above optimum, additional drying effort to attain moisture contents suitable for compaction should be anticipated regardless of the time of year.

8.4 Grading/Embankments/Slopes

- 8.4.1 All earthwork operations should be observed and all fills tested for recommended compaction and moisture content by a representative of our firm. References to relative compaction and optimum moisture content in this report are based on the American Society for Testing and Materials (ASTM) D1557 Test Procedure, latest edition.
- 8.4.2 Prior to commencing grading, a pre-construction conference with representatives from CEMEX, the grading contractor, and Geocon should be held at the site. Site preparation, soil handling and/or the grading plans should be discussed at the pre-construction conference.
- 8.4.3 Prior to commencing grading within embankment and slope areas, surface vegetation should be removed by stripping to a sufficient depth to remove roots and organic-rich topsoil. We estimate stripping depth will be on the order of 2 to 4 inches. Material generated during stripping is not suitable for use as embankment or reclamation slope fill but may be stockpiled for future use as topsoil. Any existing trees and associated root systems should be removed. Roots larger than 1 inch in diameter should be completely removed. Smaller roots may be left in-place as conditions warrant and at the discretion of our field representative.
- 8.4.4 Prior to placing fill in the existing Topcon ponds, the ponds should be dewatered and allowed to dry for some time. We expect that clay soils exposed in the pond bottoms will be wet and unstable, even after dewatering. We recommend placing a bridging layer of rock (local gravel deposits) to stabilize the bottom and to allow access for grading equipment. For planning purposes, placing a 2- to 3-foot layer of gravel should provide adequate stabilization. Geocon should observe conditions exposed at the time of grading and provide specific stabilization recommendations during construction based on conditions encountered.
- 8.4.5 To increase stability and to provide a stable foundation for the embankments, the full length of the embankments should be provided with embankment-width keyways. The keyways should have a minimum embedment depth of 3 feet into firm, competent, undisturbed soil. The actual depth of the keyway should be evaluated during construction by a Geocon representative. Keyway backslopes should be no flatter than 1:1.

- 8.4.6 In general, where fill is placed on sloping ground steeper than 5H:1V, the fill should be benched into the adjacent native materials as the fill is placed. Benches should roughly parallel slope contours and extend at least 2 feet into competent material. In addition, a keyway should be cut into the slope at the base of the fill. In general, keyways should be at least 15 feet wide and extend at least 2 feet into competent material. Bench and keyway criteria may need revision during construction based on the actual materials encountered and grading performed in the field.
- 8.4.7 Pipe penetrations through the new ADV embankment should be avoided. If pipe penetrations are unavoidable, we recommend providing concrete cut-off collars at the penetration to reduce potential for seepage. Reinforced concrete cut-off collars should completely encircle the pipe and should be sized such that they are 12 to 18 inches larger than the nominal outside diameter of the pipe. Thickness should be at least 6 inches. Water-tight filler should be used between collars and pipes.
- 8.4.8 Bottoms of keyways and areas to receive fill should be scarified 12 inches, uniformly moisture-conditioned at or above optimum moisture content and compacted to at least 90% relative compaction. Scarification and recompaction operations should be performed in the presence of a Geocon representative to evaluate performance of the subgrade under compaction equipment loading.
- 8.4.9 Engineered fill consisting of onsite or approved import materials should be compacted in horizontal lifts not exceeding 8 inches (loose thickness) and brought to final subgrade elevations. Each lift should be moisture-conditioned at or above optimum and compacted to at least 90% relative compaction.
- 8.4.10 Fill slopes should be built such that soils are uniformly compacted to at least 90% relative compaction to the finished face of the completed slope. This may require over-building the slopes and cutting them back. Track-walking is typically not an acceptable means of slope zone compaction.

8.5 Slope Maintenance

As with any slope, slopes along the project alignment will be susceptible to erosion and surficial degradation when exposed to rain and surface runoff. Proper surface drainage facilities directing runoff away from slopes, vegetation, erosion control measures, and best management practice (BMP) devices should be maintained to reduce long-term slope degradation from erosion. Periodic inspections should be performed on a regular basis to identify and address maintenance needs.

Geocon should be contacted to observe erosional features and provide specific maintenance and repair recommendations, as needed. In general, localized slumps deeper than about 2 to 3 feet should be excavated/removed and replaced with engineered fill (compacted to at least 90% relative compaction) that is keyed and benched into the existing, intact slope. Significant erosional features such as deep rills and gullies should be re-graded (smoothed, backfilled, and tracked/compacted). Any repaired areas should be re-vegetated as soon as possible.

9.0 FURTHER GEOTECHNICAL SERVICES

9.1 Plan Review

We should review the construction improvement drawings prior to final submittal to assess whether our recommendations have been properly incorporated and evaluate if additional analysis and/or recommendations are required.

9.2 Testing and Observation Services

The recommendations provided in this report are based on the assumption that we will continue as Geotechnical Engineer of Record throughout the construction phase. It is important to maintain continuity of geotechnical interpretation and confirm that field conditions encountered are similar to those anticipated during design. It will be critical to verify that the material used for fill/embankments on this project comply with the minimum recommended material specifications (Table 8.2). If we are not retained for these services, we cannot assume any responsibility for other's interpretation of our recommendations or the future performance of the project.

10.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, a licensed geotechnical engineer should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous materials or environmental contamination was not part of the scope of services provided by Geocon.

This report is issued with the understanding that it is the responsibility of the owner or their representative to ensure that the information and recommendations contained herein are brought to the attention of the design team for the project and incorporated into the plans and specifications, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.

The recommendations contained in this report are preliminary until verified during construction by representatives of our firm. Changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. Additionally, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated partially or wholly by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

Our professional services were performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices used in this area at this time. No warranty is provided, express or implied.

11.0 REFERENCES

- 1. Alyamani and Sen, *Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves*, Groundwater Journal, July-August 1993.
- 2. Balance Hydrologics, Inc. and EMKO Environmental Inc., *Memo Infiltration Tests of Native and Spoil Soil Along Reach B, Arroyo del Valle, CEMEX Eliot Facility*, May 13, 2016.
- 3. Blake, T.F., EQFAULT, A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults, Version 2.20, 2000.
- 4. Barlock, V.E. (1989), Sedimentology of the Livermore Gravels (Miocene-Pleistocene), Southern Livermore Valley, California.
- 5. Berlogar Stevens & Associates (2012), *Slope Stability Investigation, Lake B Corrective Action Plan, SMP23 Quarry, Livermore, California*, October 30, 2012.
- 6. Brown and Caldwell, Concept Design for the Arroyo Del Valle Realignment at Lake B, Alameda County, California, Surface Mine Permit -23, CA MINE 91-01-0009, May 2016.
- 7. Bryant & Hart, E. W., Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps, California Division of Mines and Geology Special Publication 42, 1973, revised 2007.
- 8. California Division of Mines and Geology, *Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117A*, revised and re-adopted September 11, 2008.
- EMKO Environmental, Inc., Second Update Hydrology and Water Quality Analysis Report for the Amendments to the Cemex Eliot Quarry SMP-23 Reclamation Plan, Alameda County, California, December 6, 2016.
- 10. Geo-Slope International, SEEP/W and SLOPE/W, Version 7.22, 2011.
- 11. KANE GeoTech, Inc., Cemex Eliot Quarry Geotechnical Characterization Report, Alameda County, California, (Project No. GT13-16), May 7, 2015 (46 pages).
- 12. KANE GeoTech, Inc., *Cemex Eliot Quarry Geotechnical Characterization Appendices, Alameda County, California,* (Project No. GT13-16), May 7, 2015 (3,795 pages).
- 13. KANE GeoTech, Inc., Cemex Eliot Quarry Lake B Evaluation Report, Alameda County, California, (Project No. GT13-16), May 7, 2015.
- 14. Jennings, C.W., Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions, California Division of Mines and Geology Map No. 6, 1994.
- 15. Sneddon, Tim, *Technical Memorandum #2 Hydraulic Conductivity of Upper and Lower Gravels*, December 10, 2004.
- 16. United States Geological Survey, 2008 Interactive Deaggregations, http://eqint.cr.usgs.gov/deaggint/2008/index.php.
- 17. Unpublished reports, aerial photographs, and maps on file with Geocon.

8H2013-08						
Arroyo Del Valle Realignment						
Cemex Eliot Mine Alameda County, California						
SITE PLAN						
S1264-05-01	March 2017	Figure 3				

BH2013-01

Photo No. 1 Embankment of Quaternary alluvium on the south side of the Quarry

Photo No. 2 Quaternary gravel in south side of existing Arroyo del Valle

PHOTOS NO. 1 & 2 Arroyo Del Valle Realignment CONSULTANTS, INC. Sigo GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132 GEOCON Project No. S1264-05-01 March 2017

Photo No. 3 Ridge of Quaternary gravel between the Pond west of the Topcon facility and Arroyo del Valle

Photo No. 4 Sandy clayey gravel near northwest end of proposed Arroyo del Valle realignment

PHOTOS NO. 3 & 4

Arroy	o Del	Valle	Realignment	

Cemex Eliot Mine

Alameda County, California GEOCON Project No. S1264-05-01 M

Photo No. 5 Existing Arroyo del Valle west of the Quarry Ponds (looking northeast)

Photo No. 6 Southwest margin of existing Arroyo del Valle west of the Quarry Ponds (looking east)

PHOTOS NO. 5 & 6

CONSULTANTS, INC. 3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132 Arroyo Del Valle Realignment Cemex Eliot Mine

Alameda County, California GEOCON Project No. S1264-05-01 M

Photo No. 7 South embankment above the Northeast Quarry Pond

Photo No. 8 View looking northwest across the Northeast Quarry Pond

TS, INC

PHOTOS NO. 7 & 8

Arroyo Del Valle Realignment

Cemex Eliot Mine Alameda County, California GEOCON Project No. S1264-05-01

Photo No. 9 Looking southeast at Lake B. Borrow Area #1 (Clay) at far end of the lake

Photo No. 10 Test Pit TP2 in Borrow Area #2 (Silt)

PHOTOS NO. 9 & 10

Cemex Eliot Mine CONSULTANTS, INC 3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132

Arroyo Del Valle Realignment

Alameda County, California GEOCON Project No. S1264-05-01

Photo No. 11 Borrow Area #2 (Silt) with soil piles excavated from TP2 (left) and TP3 (right)

Photo No. 12 Test Pit TP4 in Borrow Area #1 (Clay)

PHOTOS NO. 11 & 12

Arroyo Del Valle Realignment

Cemex Eliot Mine Alameda County, California GEOCON Project No. S1264-05-01 M

Photo No. 13 Test Pit TP8 in Quaternary alluvium (Silty clayey sand with gravel) south of the South Quarry Pond

PHOTO NO. 13			
CEOCON	Arroyo Del Valle Real	gnment	
CONSULTANTS, INC.	Cemex Eliot Mir Alameda County, Ca	ne lifornia	
PHONE 916.852.9118 - FAX 916.852.9132	GEOCON Project No. S1264-05-01	March 2017	

APPENDIX A

FIELD EXPLORATION PROGRAM

Our field exploration program was performed on December 22, 2016, and consisted of excavating ten exploratory test pits (T1 through T10) with track-mounted excavators (Komatsu 240 and Caterpillar 325 excavators equipped with 36-inch wide buckets) at the approximate locations shown on the Site Plan, Figure 3. Bulk samples were obtained from the test pits. Upon completion, the test pits were backfilled with the excavated material.

Subsurface conditions encountered in the test pits were visually examined, classified and logged in general accordance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488-90). This system uses the Unified Soil Classification System (USCS) for soil designations. The logs depict the soil and geologic conditions encountered and the depths at which samples were obtained. The logs also include our interpretation of the conditions between sampling intervals. Therefore, the logs contain both observed and interpreted data. We determined the lines designating the interface between soil materials on the logs using visual observations, excavation characteristics and other factors. The transition between the materials may be abrupt or gradual. Where applicable, the field logs were revised based on subsequent laboratory testing. Logs of exploratory test pits are presented herein.

UNIFIED SOIL CLASSIFICATION

	MAJOR	DIVISIONS			TYPICAL NAMES
		CLEAN GRAVELS WITH	GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
	GRAVELS	LITTLE OR NO FINES	GP	0.000	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
OILS ARSER E	LARGER THAN NO.4 SIEVE SIZE	ARGER THAN NO.4 SIEVE SIZE GRAVELS WITH OVER	GM	2 - K	SILTY GRAVELS, SILTY GRAVELS WITH SAND
AINED S LF IS CO. 200 SIEV		12% FINES	GC	19' p; 01 ; 4 14	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
SE-GR THAN HA		CLEAN SANDS WITH	SW		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
COAF MORE	SANDS MORE THAN HALF	LITTLE OR NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
	SMALLER THAN NO.4 SIEVE SIZE	SANDS WITH OVER	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		12% FINES	SC		CLAYEY SANDS WITH OR WITHOUT GRAVEL
	SILTS AND CLAYS LIQUID LIMIT 50% OR LESS UN UN UN UNIT 50% OR LESS UN UN U		ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
iner Ner			CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED SO HALF IS F 200 SIEV			OL		ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
		мн	<u>}</u> }}	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS	
		СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
			он		ORGANIC CLAYS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY OR	GANIC SOILS	PT	77 77 77 77 7 77 77	PEAT AND OTHER HIGHLY ORGANIC SOILS

BORING/TRENCH LOG LEGEND

-No Recovery	PENETRATION RESISTANCE						
	SAN	D AND GRA	VEL		SILT A	ND CLAY	
∏ - Shelby Tube Sample 3" O.D.	RELATIVE DENSITY	BLOWS PER FOOT (SPT)*	BLOWS PER FOOT (MOD-CAL)*	CONSISTENCY	BLOWS PER FOOT (SPT)*	BLOWS PER FOOT (MOD-CAL)*	COMPRESSIVE STRENGTH (tsf)
Bulk Sample	VERY LOOSE	0 - 4 5 - 10	0-6 7-16	VERY SOFT	0-2 3-4	0-3 4-6	0 - 0.25 0.25 - 0.50
— SPT Sample 2" O.D., 1.4" I.D.	MEDIUM DENSE	11 - 30	17 - 48	MEDIUM STIFF	5 - 8	7 - 13	0.50 - 1.0
Modified California Sample 3" O.D., 2.4" I.D.	DENSE	31 - 50	49 - 79	STIFF	9 - 15	14 - 24	1.0 - 2.0
Groundwater Level	VERY DENSE	OVER 50	OVER 79	VERY STIFF	16 - 30	25 - 48	2.0 - 4.0
(At Completion)				HARD	OVER 30	OVER 48	OVER 4.0
∑—(Seepage)	*NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30						

MOISTURE DESCRIPTIONS

FIELD TEST	APPROX. DEGREE OF SATURATION, S (%)	DESCRIPTION
NO INDICATION OF MOISTURE; DRY TO THE TOUCH	S<25	DRY
SLIGHT INDICATION OF MOISTURE	25 <u><</u> S<50	DAMP
INDICATION OF MOISTURE; NO VISIBLE WATER	50 <u><</u> S<75	MOIST
MINOR VISIBLE FREE WATER	75 <u><</u> S<100	WET
VISIBLE FREE WATER	100	SATURATED

QUANTITY DESCRIPTIONS

APPROX. ESTIMATED PERCENT	DESCRIPTION
<5%	TRACE
5 - 10%	FEW
11 - 25%	LITTLE
26 - 50%	SOME
>50%	MOSTLY

GRAVEL/COBBLE/BOULDER DESCRIPTIONS

CRITERIA	DESCRIPTION
PASS THROUGH A 3-INCH SIEVE AND BE RETAINED ON A NO. 4 SIEVE (#4 TO 3")	GRAVEL
PASS A 12-INCH SQUARE OPENING AND BE RETAINED ON A 3-INCH SIEVE (3"-12")	COBBLE
WILL NOT PASS A 12-NCH SQUARE OPENING (>12")	BOULDER

LABORATORY TEST KEY

R - R-VALUE (CTM 301) SE - SAND EQUIVALENT (CTM 217)

SE – SAND EQUIVALENI (CIM 217) TXCU – CONSOLIDATED UNDRAINED TRIAXIAL (ASTM D4767) TXUU – UNCONSOLIDATED UNDRAINED TRIAXIAL (ASTM D2850) UC – UNCONFINED COMPRESSIVE STRENGTH (ASTM D2166)

- CP COMPACTION CURVE (ASTM D1557)
- CR CORROSION ANALYSIS (CTM 422, 643, 417)
- DS DIRECT SHEAR (ASTM D3080)
- EI EXPANSION INDEX (ASTM D4829)
- GSA GRAIN SIZE ANALYSIS (ASTM D422)
- MC MOISTURE CONTENT (ASTM D2216)
- PI PLASTICITY INDEX (ASTM D4318)

BEDDING SPACING DESCRIPTIONS

THICKNESS/SPACING	DESCRIPTOR
GREATER THAN 10 FEET	MASSIVE
3 TO 10 FEET	VERY THICKLY BEDDED
1 TO 3 FEET	THICKLY BEDDED
3 %-I NCH TO 1 FOOT	MODERATELY BEDDED
1 🔏 INCH TO 3 🗞 INCH	THINLY BEDDED
¾-I NCH TO 1 ¼-I NCH	VERY THINLY BEDDED
LESS THAN %-I NCH	LAMINATED

STRUCTURE DESCRIPTIONS

CRITERIA	DESCRIPTION
ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LAYERS AT LEAST	STRATIFIED
ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LAYERS LESS THAN X-INCH THICK	LAMINATED
BREAKS ALONG DEFINITE PLANES OF FRACTURE WITH LITTLE RESISTANCE TO FRACTURING	FISSURED
FRACTURE PLANES APPEAR POLISHED OR GLOSSY, SOMETIMES STRIATED	SLICKENSIDED
COHESIVE SOIL THAT CAN BE BROKEN DOWN INTO SMALLER ANGULAR LUMPS WHICH RESIST FURTHER BREAKDOWN	BLOCKY
INCLUSION OF SMALL POCKETS OF DIFFERENT SOIL, SUCH AS SMALL LENSES OF SAND SCATTERED THROUGH A MASS OF CLAY	LENSED
SAME COLOR AND MATERIAL THROUGHOUT	HOMOGENOUS

CEMENTATION/INDURATION DESCRIPTIONS

FIELD TEST	DESCRIPTION
CRUMBLES OR BREAKS WITH HANDLING OR LITTLE FINGER PRESSURE	WEAKLY CEMENTED/INDURATED
CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE	MODERATELY CEMENTED/INDURATED
WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE	STRONGLY CEMENTED/INDURATED

IGNEOUS/METAMORPHIC ROCK STRENGTH DESCRIPTIONS

FIELD TEST	DESCRIPTION
MATERIAL CRUMBLES WITH BARE HAND	WEAK
MATERIAL CRUMBLES UNDER BLOWS FROM GEOLOGY HAMMER	MODERATELY WEAK
m m m m m m m m m m m m m	MODERATELY STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH ONE BLOW FROM GEOLOGY HAMMER	STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH COUPLE BLOWS FROM GEOLOGY HAMMER	VERY STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH MANY BLOWS FROM GEOLOGY HAMMER	EXTREMELY STRONG

IGNEOUS/METAMORPHIC ROCK WEATHERING DESCRIPTIONS

DEGREE OF DECOMPOSITION	FIELD RECOGNITION	ENGINEERING PROPERTIES
SOIL	DISCOLORED, CHANGED TO SOIL, FABRIC DESTROYED	EASY TO DIG
COMPLETELY WEATHERED	DISCOLORED, CHANGED TO SOIL, FABRIC MAINLY PRESERVED	EXCAVATED BY HAND OR RIPPING (Saprolite)
HIGHLY WEATHERED	DISCOLORED, HIGHLY FRACTURED, FABRIC ALTERED AROUND FRACTURES	EXCAVATED BY HAND OR RIPPING, WITH SLIGHT DIFFICULTY
MODERATELY WEATHERED	DISCOLORED, FRACTURES, INTACT ROCK-NOTICEABLY WEAKER THAN FRESH ROCK	EXCAVATED WITH DIFFICULTY WITHOUT EXPLOSIVES
SLIGHTLY WEATHERED	MAY BE DISCOLORED, SOME FRACTURES, INTACT ROCK-NOT NOTICEABLY WEAKER THAN FRESH ROCK	REQUIRES EXPLOSIVES FOR EXCAVATION, WITH PERMEABLE JOINTS AND FRACTURES
FRESH	NO DISCOLORATION, OR LOSS OF STRENGTH	REQUIRES EXPLOSIVES

IGNEOUS/METAMORPHIC ROCK JOINT/FRACTURE DESCRIPTIONS

FIELD TEST	DESCRIPTION
NO OBSERVED FRACTURES	UNFRACTURED/UNJOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 1 TO 3 FOOT INTERVALS	SLIGHTLY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 4-INCH TO 1 FOOT INTERVALS	MODERATELY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 1-INCH TO 4-INCH INTERVALS WITH SCATTERED FRAGMENTED INTERVALS	INTENSELY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT LESS THAN 1-INCH INTERVALS; MOSTLY RECOVERED AS CHIPS AND FRAGMENTS	VERY INTENSELY FRACTURED/JOINTED

CON	ISU	LTA	NTS	IN	C.							
3160 (GOLD	VALL	EYDR	-su	TE 8	00-	RANC	но	CORE	OVA,	СA	95742
PHON	E 916	.852.	9118 -	FAX	916	852	9132					

KEY TO LOGS

Figure A1

	PROJECT NO.	S1264-05-01
--	-------------	-------------

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	КЭОТОНЛІТ	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP1 ELEV. (MSL.) ~382' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer EQUIPMENT CAT 325 Excavator HAMMER TYPE NA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
0					MATERIAL DESCRIPTION				
- 0 - - 1 - - 2 - - 3 - - 4 - - 5 -	TP1-5 🗸			CL	FILL Moist, brown, Sandy lean CLAY with gravel, rounded gravel to 4 inches maximum dimension	- - -			GSA PI
- 6 - - 7 - - 8 - - 9 -						_			USA, PI
- 10 - - 11 - - 12 - - 13 - - 14 -	TPI-IO					-			
- 15 - - 16 - - 17 - - 18 - - 19 - - 20 -	TP1-15				- increased gravel below approximately 17 feet	_			
20					TEST PIT TERMINATED AT 20 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A2, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

 SAMPLE SYMBOLS

 □ ... SAMPLING UNSUCCESSFUL
 □ ... STANDARD PENETRATION TEST
 □ ... DRIVE SAMPLE (UNDISTURBED)
 □ ... DRIVE SAMPLE
 □ ... DRIVE SAMPLE (UNDISTURBED)
 □ ... DRIVE SAMPLE
 □ DRIVE SAMPLE
 □ ... DRIVE SAMPLE
 □ ... DRIVE SAMP

PROJEC	T NO.	S1264-05	-01		PRO	JECT NAME Cemex Eliot				
DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	ADOTOHLIT	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP2 ELEV. (MSL.) ~382' ENG./GEO. John C. Pfeiffer EQUIPMENT CAT 325 Excavator	DATE COMPLETED <u>12/22/2016</u> DRILLER <u>Independent Constructio</u> HAMMER TYPE <u>NA</u>	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL I	DESCRIPTION				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TP2-10 TP2-15			CL	FILL Moist, brown, Sandy lean CL gravel to 4 inches maximum d - increased gravel below appro TEST PIT TERMIN GROUNDWATER N	AY with gravel, rounded dimension				

Figure A3, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

 SAMPLE SYMBOLS

 □ ... SAMPLING UNSUCCESSFUL
 □ ... STANDARD PENETRATION TEST
 □ ... DRIVE SAMPLE (UNDISTURBED)
 □ ... DISTURBED OR BAG SAMPLE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ ... CHUNK SAMPLE
 □ ... CHUNK SAMPLE
 □ ... CHUNK SAMPLE
 □ ... WATER TABLE OR SEEPAGE
 □ ... CHUNK SAMPLE
 □ CHUN

PROJEC	ΓNO. S	51264-05	5-01		PROJECT NAME Cemex Eliot				
DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	AÐOTOHLIT	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP3 ELEV. (MSL.)382' DATE COMPLETED 12/22/2016 ENG./GEOJohn C. Pfeiffer DRILLER Independent Construction EQUIPMENT CAT 325 Excavator HAMMER TYPENA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TP1-5 TP3-10			CL	FILL Moist, brown, Sandy lean CLAY with gravel, rounded gravel to 4 inches maximum dimension - increased gravel below approximately 17 feet TEST PIT TERMINATED AT 20 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A4, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

PROJECT NO.	S1264-05-01

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP4 ELEV. (MSL.) ~304' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer EQUIPMENT CAT 325 Excavator HAMMER TYPE NA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
- 0 -	TP4A-F			CL	ALLUVIUM				GSA, PI
- 1 -	X				Moist, reddish brown to brown, Sandy lean CLAY, little round to subround gravel to 1.5 inches maximum dimension	_			
- 2 -	K	///				-			
- 3 -	Å		-			_			
- 4 -	i 🕺	/ ./	1			-			
- 5 -						_			
- 6 -						-			
- 7 -	h X					-			
- 8 -	X					_			
- 9 -	X		1			-			
- 10 -						_			
- 11 -	Å					-			
- 12 -	X		1			-			
- 13 -						-			
- 14 -						-			
- 15 -						-			
- 16 -	Å		-		- increased moisture	-			
- 17 -	i V	/ /				-			
- 18 -			₽			–			
- 19 -					- increased gravel content below 19 feet	_			
- 20 -	Х	/. /			TEST DIT TEDMINATED AT 20 EEET				
					GROUNDWATER ENCOUNTERED AT 18 FEET				

Figure A5, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

 SAMPLE SYMBOLS

 ... SAMPLING UNSUCCESSFUL
 ... STANDARD PENETRATION TEST
 ... DRIVE SAMPLE (UNDISTURBED)
 ... WATER TABLE OR SEEPAGE

PROJEC	T NO. S	1264-0	5-01	1	PROJECT NAME Cemex Eliot				
DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP5 ELEV. (MSL.) ~294' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer EQUIPMENT CAT 325 Excavator HAMMER TYPE NA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	тръл-в . X . X . X . X . X . X . X . X . X . X			GC	ALLUVIUM Damp to moist, brown, Clayey GRAVEL, subround to round gravel to 4 inches maximum dimension	-			
- 6 -						_			
					TEST PIT TERMINATED AT 6.5 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A6, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED) SAMPLE SYMBOLS 🕅 ... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE ▼ WATER TABLE OR SEEPAGE

PROJECT NAME Cemex Eliot

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	TITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP6 ELEV. (MSL.) 410' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer DRILLER Independent Construction EQUIPMENT Komatsu 240 Excavator w/36'' HAMMER TYPE NA MATERIAL DESCRIPTION	PENETRATION RESISTANCE (BLOWS/FT)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
	1P6-0-1.5			ML	Damp, brown, SILT, trace sand and fine to medium round gravel				
- 2 - - 3 - - 4 - - 5 - - 6 - - 7 -	TP6-1.5-8A-C			GW-GC	Loose to medium dense, gray, Well graded GRAVEL with silt, clay, and sand				<u>G</u> SA
- 8 -	X	20 70	¢ ,		TEST PIT TERMINATED AT 8 FEFT				
					GROUNDWATER NOT ENCOUNTERED				

Figure A7, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

PROJECT NAME Cemex Eliot

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	АЭОТОНЛІТ	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP7 ELEV. (MSL.) 422' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer DRILLER Independent Construction EQUIPMENT bucket HAMMER TYPE NA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
0					MATERIAL DESCRIPTION				
- 1 -	1P7-0-2.5			ML	Damp, dark brown, Sandy SILT with gravel	_			
- 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 -	TP7-3-9			-sc	Medium dense to dense, damp, yellowish brown, Silty clayey SAND with gravel, subround to round gravel to 4 inches maximum dimension				GSA
- 12 -					TEST PIT TERMINATED AT 12 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A8, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

PROJECT NAME Cemex Eliot

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP8 ELEV. (MSL.) 422' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer DRILLER Independent Construction EQUIPMENT bucket	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
- 1 -				ML	Damp, dark brown, Sandy SILT with gravel	_			
- 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 -	178-3-9			SC	Medium dense to dense, damp, yellowish brown, Silty clayey SAND with gravel, subround to round gravel to 4 inches maximum dimension	-			
_ y _					TEST PIT TERMINATED AT 9 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A9, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

 N
 SAMPLE SYMBOLS
 ... SAMPLING UNSUCCESSFUL
 Image: mail of the sample of the samp

PROJECT NAME	Cemex Eliot
--------------	-------------

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	ADOTOHLIT	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP9 ELEV. (MSL.) ~400' DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer DRILLER Independent Construction EQUIPMENT Komatsu 240 Excavator w/ 36" HAMMER TYPE NA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
0					MATERIAL DESCRIPTION				
- 0 -	TP9-0-3			ML	Damp to moist, brown, SILT to gravelly SILT				
- 1 -	i 🛛 🕅					-			
- 2 -									
- 3 -	TP9-3-10			SW-SM	Medium dense moist grav to brownish grav interbedded		<u> </u>	┞──┘	
- 4 -	. 8	0			well graded SAND with gravel and well graded GRAVEL				
5		00			with silt, clay and sand - layers/lenses 1 to 2 feet thick subround to round gravel to				
_ 3 _		0			4 inches maximum dimension				
- 6 -	i X	0	_			_			
- 7 -	· Å	0				-			
- 8 -	l X	0				_			
_ 9 _	. 🕺	0 Ø							
10	X	0							
- 10 -		00							
- 11 -		0				-			
- 12 -					TEST PIT TERMINATED AT 12 FEET	_			
					TEST PIT TERMINATED AT 12 FEET GROUNDWATER NOT ENCOUNTERED				

Figure A10, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

PROJECT NAME Cemex Eliot

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TP10 ELEV. (MSL.) ~372 DATE COMPLETED 12/22/2016 ENG./GEO. John C. Pfeiffer DRILLER Independent Construction EQUIPMENT bucket	PENETRATION RESISTANCE (BLOWS/FT)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
0					MATERIAL DESCRIPTION				
		0 0		SW	Moist, brownish gray, Well graded SAND with gravel				
- 1 -				- <u></u>	Moist to wet, brown to light brown, Clayey GRAVEL with cobbles and boulders to 18 inches				
- 3 -		~ / P	1			-			
- 4 -		6/1				_ /			
- 5 -		9/							
- 6 -					- seepage	-			
- 7 -		0/1/				_			
- 8 -		10/				-			
- 9 -						_			
- 10 -		(1		TEST PIT TERMINATED AT 10 FEET				
					GROUNDWATER NOT ENCOUNTERED				

Figure A11, Log of Test Pit, page 1 of 1

IN PROGRESS S1264-05-01 CEMEX ELIOT.GPJ 01/27/17

 SAMPLE SYMBOLS

 □...SAMPLING UNSUCCESSFUL
 □...STANDARD PENETRATION TEST
 □...DRIVE SAMPLE (UNDISTURBED)
 □...DRIVE SAMPLE (UNDISTURBED)

GeoTech, Inc. Geoengineering Consultants	Kane Geo Iech Inc. 7400 Shoreline Drive, Suite 6 Stockton, California 95219 209-472-1822	PAGE 1 OF 1
CLIENT CEMEX Eliot Quarry		PROJECT NAME Eliot Quarry Geotechnical Investigation
PROJECT NUMBERGT13-16		PROJECT LOCATION Pleasanton, California
DATE STARTED 4/12/13	COMPLETED 4/14/13	GROUND ELEVATION _ 416 ft MSL _ HOLE SIZE _ 12 in
DRILLING CONTRACTOR Layne		GROUND WATER LEVELS:
DRILLING METHOD Becker Hamm	er Drill	
LOGGED BY SPB	CHECKED BY	AT END OF DRILLING
NOTES		AFTER DRILLING
	ATTERBERG	
DEPTH (f) (f) (f) (f) (f) (f) (f) (f) (f) NUMBEF NUMBEF (RQD) BLOW COUI	POCKET P (Isi) DRY UNIT (Pcf) MOISTUF CONTENT LIQUID LIQUID LIQUID LIQUID LIMIT PLASTICITY INDETCITY	MATERIAL DESCRIPTION
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gravel, 0.25" to 4" rounded, sand, and sticky tan clay
270	1.33	
280 140 SS 100 1-2-2 280 (4)	4.5+ 90.3 32.1 58.4 29 29 90 32.2 68.3 28.9 39	Blue Clay, sticky, moist. Sample 1 Unconfined Compressive Strength: 10,076 psf Sample 2 Unconfined Compressive Strength: 7,629 psf

CEMEX Eliot Quarry Geotechnical Characterization Report Volume II – Appendices Page II-15

Geoengir	A BeoTech	VE , Inc.	Sultants	Kar 740 Sto 209	ne Geo 00 Sho ockton, 9-472-	oTech I reline Califo 1822	nc. Drive, rnia 95	Suite 6 219	3			BORING NUMBER BH2013-0 PAGE 1 OF
CLIENT CE	MEX Eli	ot Qua	rry							PROJ	ECT N	AME Eliot Quarry Geotechnical Investigation
PROJECT NU	JMBER	GT13	3-16							PROJ	ECT L	OCATION Pleasanton, California
DATE STAR	TED 4/	6/13		CON	IPLET	ED 4	1/8/13			GROL	ND EL	_EVATION 392 ft MSL HOLE SIZE 12 in
DRILLING CO		TOR	Lavne	_						GROL	ND W	ATER LEVELS:
DRILLING MI	ETHOD	Beck	er Hamme	r Drill						∇		ME OF DRILLING 65 00 ft / Elev 327 00 ft
	IFP	Been		CHE		BV				-		
					ONEL							
				1	1							
	Ц	%	IS	z	н.		AT	LIMITS	RG			
DEPTH (ft) (ft) (ft) (ft)	SAMPLE TYI NUMBER	RECOVERY (RQD)	BLOW COUN	POCKET PE (tsf)	DRY UNIT M (pcf)	MOISTURE CONTENT ("	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
390	-									ø XX		Gravel, up to 3" diameter, sand, and tan
10 380	-									5 <i>4</i> /2		clay
20 370	_			1) X		
30 3 60										8A/S		
40 350	-									St		
50 = 50	-									X	GC	
	-									18H		
60 330	-									2087		∇
70 320	_									°/X		<u></u>
80 = 310										XX		
90 200	-									Z		
100 = 300	SS	0	27								CL	─ Brown clay, some gravel
290	1									28/	GC	Gravel, up to 3" diameter, sand, tan clay
110 280	-									×//	90	
120 270		100	0 40 04	0.40						<i>Ì]////</i>	CL	Brown clay
130 ±260	2	100	(36)	3.13	1							Gravel, sand, and clay, light brown, up to
	-									78		4" diameter clasts
450 = 3	-									1 L	GC	
240	-									5 / S		
160 230	-									1 de la constante de la consta		
170 220	_										GC	Clayey gravel/gravel and clay layers
180 210										sAL	-	Gravel sand and clay light brown
190	-									5 <i>4</i> /3		
200 = 200	-									To the		
	-									84%		
210 180	-									ES E		
220 170	-									2002	GC	
230 [±] 160 [±]										286		
240	-									28		
250 100	-											
140	-									and the		
260 130	-									42		
270 <u>1</u> 20	_										GC	Gravel and clay, light brown
280 110	-									The second		Gravel sand and clay light brown
290	-									3 <i>7/</i> ,	GC	
	-									XX	00	
300 +				1						10.61		Bottom of borobolo at 200.0 feet
												Dottom of borehole at 500.0 leet.

GeoTech, Inc.	S Iltants	Kane Ge 7400 Sh Stockton 209-472-	oTech oreline , Califo -1822	Inc. Drive, rnia 95	Suite 6 219	8			PAGE 1 OF
CLIENT CEMEX Eliot Qu	uarry	_4					PROJI	ECT N	AME Eliot Quarry Geotechnical Investigation
PROJECT NUMBERGT	13-16						PROJI	ECT L	OCATION _ Pleasanton, California
DATE STARTED 4/4/13		COMPLE	TED _4	1/5/13			GROU	ND EL	EVATION _401 ft MSL HOLE SIZE _12 in
DRILLING CONTRACTOR	Layne						GROU	ND W	ATER LEVELS:
DRILLING METHOD Bee	cker Hammer	Drill					Y	AT TI	ME OF DRILLING _70.00 ft / Elev 331.00 ft
		CHECKEI	D BY						
NOTES				1				AFTE	R DRILLING
Е %	SL	zi Li	ш <u>%</u>		lerbe Limits	RG			
DEPTH (ff) (ff) (ff) SAMPLE TY NUMBER RECOVERY	BLOW COUN	POCKET PE (tsf) DRY UNIT V (pcf)	MOISTUR CONTENT (LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
10 390 20 380 30 370 40 360 50 330 60 340 70 330 80 320 90 310 100 300 110 280 120 280 130 270 140 260 150 250 160 240 170 230 180 220 190 210 200 200 210 190 220 180 230 1770 230 170 240 160 250 150 260 140 270 130								GC	Gravel, rounded, up to 4" diameter, sand, brown clay
290 <u>- 110 </u>									Bottom of borehole at 300.0 feet.

Geoengineering	n, Inc. g Cons iot Qua	sultants	209	ckton, 9-472-1	Califo 1822	rnia 95	5219		PROJI	ECT N	AME _Eliot Quarry Geotechnical Investigation
PROJECT NUMBER DATE STARTED <u>4</u> DRILLING CONTRA DRILLING METHOD	<u>GT13</u> /2/13 CTOR Beck	3-16 Layne		/IPLET	ED _4	1/3/13			PROJI GROU GROU	ECT L IND EL IND W AT TII	OCATION Pleasanton, California _EVATION _300 ft MSL HOLE SIZE 12 in ATER LEVELS:
LOGGED BY SPB			CHE	CKED	BY					AT EN AFTE	ID OF DRILLING R DRILLING
DEPTH (ff) (ff) (ff) SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	AT LIMIT LIMIT	PLASTIC PLASTIC LIMIT		GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
								_		GC	Gravel
10 290 SS 20 280 SS	100	20	2.81							CL	Clay, brown, moist
30 270 40 260 50 250 60 240		(107)	1							GC	Gravel, sub-angular, sand, brown clay ⊈
70 230 GB										CL	Clay, brown, moist
80 220 90 210 100 200 GB 4 110 190 120 180 130 170 140 160 150 150 150 150 160 140 170 130 180 120 180 120 190 110										GC	Gravel, sub-angular to round, sand, brown clay

Ge	pengi IT_CE	GeoTech neering MEX El	n, Inc. g Cons iot Qua	sultants	Sto 209	ockton, 9-472-	Califo 1822	rnia 95	5219		PROJ	ECT N	AME _Eliot Quarry Geotechnical Investigation
PROJ	ECT N	UMBER	GT1	3-16							PROJ	ECT L	OCATION _ Pleasanton, California
DATE	STAR	TED 4	/14/13		CON	NPLET	ED _	4/14/13	3		GROL	IND EI	_EVATION _304 ft MSL HOLE SIZE _12 in
			CTOR								GROL		
LOGO		(SPB	Decr		CHE	CKEL	BY				<u> </u>		
NOTE	s											AFTE	R DRILLING
				<i>(</i>)				AT	FERBE	RG			
o DEPTH (ft)	Elevation (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN (tsf)	DRY UNIT WT (pcf)	MOISTURE CONTENT (%	LIQUID		PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
	300	_										GW	⊊ Gravel
		ss 1	89	19-34-103 (137)	4.29	-						CL	Clay- brown, sticky, moist
10												GC	Gravel, sticky brown clay, sand
	290	-	67	37-82	4.38	-							Clay- brown, sticky, moist
20		2		26 47 57								CL	
	280 	-		(104)	2.13							GC	Gravel, sand, and clay-brown, sticky, moi
50													Bottom of borehole at 50.0 feet.

Geo CLIEN PROJE	Dengir IT <u>CE</u> ECT NU	MEX EI	, Inc. Cons iot Qua	sultants rry 3-16	Kar 740 Sto 209	ne Geo 00 Sho ockton, 9-472-	oTech oreline Califo 1822	Inc. Drive, rnia 95	Suite 6 219	3	PROJ PROJ	ECT N ECT L	BORING NUMBER BH2013-10 PAGE 1 OF AME _Eliot Quarry Geotechnical Investigation OCATION _Pleasanton, California
DATE DRILL DRILL LOGG	STAR ING CO ING M ED BY	TED _4, ONTRAG ETHOD SPB	14/13 CTOR Beck	Layne er Hamme	_ COM r Drill _ CHE	IPLET	ED	4/14/13	3		GROL GROL ∑	IND EI IND W AT TII AT EN	LEVATION 304 ft MSL HOLE SIZE 12 in ATER LEVELS:
NOTE	s							AT	TERBE	RG		AFTE	R DRILLING
DEPTH (ft)	Elevation (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT (pcf)	MOISTURE CONTENT (%)	LIMIT		PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
												GW	Gravel
 <u>10</u>	300	SS 1 SS 2	0 94	34-72 24-20-98 (118)	2.92	106.8	21.4	34.1	19.3	15		CL	☑ Clay- brown, sticky, moist. Unconfined Compressive Strength: 5,111 psf
		-										GC	Gravel, tan clay, sand.
50													Bottom of borehole at 50.0 feet.

Geo	K	A/ eoTech	VE n, Inc.	Sultants	Kar 740 Sto 209	ne Geo 00 Sho ockton, 9-472-1	Tech I reline Califo 1822	nc. Drive, rnia 95	Suite 6 5219	3			BORING NUMBER BH2013-1 PAGE 1 OF
CLIEN	T_CEI	MEX Eli	iot Qua	rry							PROJI	ECT N	AME _Eliot Quarry Geotechnical Investigation
PROJE		MBER	GT13	3-16							PROJI	ECTL	OCATION _ Pleasanton, California
DATE	START	ED 4/	5/13		CON	/IPLET	ED _4	4/5/13			GROU	ND EL	EVATION _ 320 ft MSL HOLE SIZE _ 12 in
DRILLI	ING CC	NTRAG	TOR	Layne							GROU	ND W	ATER LEVELS:
DRILLI	ing me	THOD	Beck	er Hamme	r Drill						$\overline{\Delta}$	AT TI	ME OF DRILLING 6.50 ft / Elev 313.50 ft
LOGG	ED BY	SPB			CHE	CKED	BY					AT EN	ID OF DRILLING
NOTES	S											AFTE	R DRILLING
		ш	%	Ś	÷	ц.	6	AT	FERBE	RG			
DEPTH (ft)	55 Elevation (ff)	SAMPLE TYF NUMBER	RECOVERY (RQD)	BLOW COUNT (N VALUE)	POCKET PEI (tsf)	DRY UNIT W (pcf)	MOISTURE CONTENT (9	LIQUID		PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
10	310											GC	${\mathbbm Z}$ Gravel, sand, and clay- brown, moist and sticky
20	300											~	
30	290	SS	100	9-17-35	4.5+						H/	UL	Cravel cand and class brasses
50 60 70 80 90 100 110 120 130	-270- -260- -260- -220- -220- -220- -220- -220- -210-2											GC	
150 160 170 180 190 200 210 220	170 160 150 140 130 120 120												

Geo	bengi	A BeoTech	VE 1, Inc. 1 Con:	Sultants	Kar 740 Sto 209	ne Geo 00 Sho ockton, 9-472-	oTech I oreline Califo 1822	nc. Drive, rnia 95	Suite 6 5219	5			PAGE 1 O
CLIEN		MEX EI	iot Qua	rry							PROJ	ECTN	IAME Eliot Quarry Geotechnical Investigation
PROJ	ECT N	JMBER	GT1	3-16							PROJ	ECTL	OCATION Pleasanton, California
DATE	STAR	TED 4	/9/13		CON	IPLET	ED _	1/10/13	3		GROL	ND E	LEVATION _376 ft MSL HOLE SIZE _12 in
DRILL	ING C	ONTRA	CTOR	Layne							GROL	ND W	ATER LEVELS:
DRILL	ING M		Beck	er Hammei	Drill						<u> </u>		ME OF DRILLING 4.00 ft / Elev 3/2.00 ft
LOGG	SED BY	IJB			CHE	CKEL	DBA						
NOTE	3											AFIE	
		Ц Ц	%	STIC (Ľ.	۲. ۲	ш8	AI	ГЕКВЕ ГІМІТЯ	RG			
o DEPTH (ft)	Elevation (ft)	SAMPLE TY NUMBER	RECOVER) (RQD)	BLOW COUN (N VALUE	POCKET PI (tsf)	DRY UNIT V (pcf)	MOISTUR CONTENT	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
10	370	_										GC	${\mathbb Z}$ Gravel, and and clay- light brown
20	360	_									111	СН	Clay and gravel- dark gray
20	350												Clay and sand, light brown.
30	340	SS 1	0 92	17-17-40 (57)	1.86	98.6	26.1	39	20	19		CI	Unconfined Compressive Strength: 1,408
40	330	SS 2	100	38-38	2.47							UL.	pst
50	200	SS		(31)									Cond arrival and slav light grave
60	-320-	3									397		Sand, gravel, and clay- light grey
70	310	-										GC	
80	300	-									89%		
00	290	_									11/1		Clay and gravel- light brown
90	280	22	100	6-18-19	2 36								
100	270	4		(37)	2.50							CL	
110 -	260	-											
120	200	_									22		Gravel, sand, and clay- light brown. Clast
130	250-	-											well rounded
140	240	-											
150 -	230	-									12		
160	220	_									200		
100	210	_									282		
1/0 -	200										208		
180		_									×		
190		-									e Co		
200	-180-	-									200	GC	
210	170	-									392		
220	160	_									S/S		
220	150	_									39%		
230	140	_									The second s		
240	130										392		
250	120	-									2D		
260		-									3/6		
270	-110 	-									20		
280 -	100	-									5/8		
					•	•	-	-	•				Bottom of borehole at 280.0 feet

Geo	bengi	GeoTech	VE n, Inc. g Con:	Sultants	Kar 740 Sto 209	ne Geo 00 Sho ockton, 9-472-	oTech reline Califo 1822	Inc. Drive, rnia 95	Suite 6 5219	8			BORING NUMBER BH2013-13 PAGE 1 OF
CLIEN	IT_CE	MEX EI	iot Qua	rry							PROJ	ECT N	AME _Eliot Quarry Geotechnical Investigation
PROJI	ECT N	UMBER	GT1	3-16							PROJ	ECT L	OCATION _ Pleasanton, California
DATE	STAR	TED 4	/11/13		CON	IPLET	ED _4	4/12/13	3		GROL	IND EL	EVATION _412 ft MSL HOLE SIZE _12 in
DRILL	ING C	ONTRA	CTOR	Layne							GROU	IND W	ATER LEVELS:
DRILL	ING M	ETHOD	Beck	er Hammei	Drill						¥		ME OF DRILLING 59.50 ft / Elev 352.50 ft
LOGG	ED BY	TJB			CHE	CKED	BY					AT EN	ID OF DRILLING
NOTE	s											AFTE	R DRILLING
		щ	%	S	÷	L.	(9	AT	TERBE	RG			
DEPTH (ft)	Elevation (ft)	SAMPLE TYP NUMBER	RECOVERY ((RQD)	BLOW COUNT (N VALUE)	POCKET PEN (tsf)	DRY UNIT W (pcf)	MOISTURE CONTENT (%	LIQUID		PLASTICITY INDEX	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION
10 20 30 40 50	410 390 380 370 360	-										GC	Gravel, sand, and clay. Light brown, dry to moist. Gravel to 4" diameter and well rounded
60	350												$\overline{\Sigma}$
70	340	- 99	67	11-30-30	3.21							CL	Clay, light brown, moist
80	330	1		(78)	3.21								
90 100 110 120 130	320 310 300 290 280	-										GC	Gravel, sand, and clay. Light brown, wet. Gravel to 4" diameter, well rounded.
140	270	SS	100	9-16-21	2.08			46.7	21.7	25			Clay and sand. Light brown, moist.
150 160 170	260 250 240	2 SS 3	100	(37) 5-17-17 (34)	1.00							CL	
180 190 200 210 220	230 220 210 200	-											Gravel, sand, and clay. Light brown. Gravel up to 4" diameter and well roundec
230 240 250 260 270	190 180 170 160 150	-										GC	
280 290 300	130 120	SS 4	67	1-1	3.83	7						CL	Sandy brown clay.
													Bottom of borehole at 300.0 feet.

APPENDIX B LABORATORY TESTING PROGRAM

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected soil samples were tested for their grain size distribution, plasticity characteristics, maximum dry density/optimum moisture content, shear strength parameters, and hydraulic conductivity. Laboratory test results from our current laboratory testing program and pertinent lab test results from previous studies are presented on the following pages.

		-	-					Sheet 1 of 1
Sample ID	Depth (feet)	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Water Content (%)	Dry Density (pcf)
TP1-3 (5-20')	5	31	13	18		55.3		
TP4A-F (0-20')	0	31	14	17		54.8		
TP6A-C (1.5-8')	1.5					6.9		
TP7-8 (3-12')	3					39.1		

Summary of Laboratory Results Project: Cemex Eliot

Location: Alameda County, California Number: S1264-05-01 Figure: B1

PI COPY 2 S1264-05-01 CEMEX ELIOT.GPJ US_LAB.GDT 1/23/17

ATTERBERG LIMITS (ASTM D4318)

Project: Cemex Eliot Location: Alameda County, California Number: S1264-05-01 Figure: B2

Consolidated Undrained Triaxial Compression - ICU Test ASTM D4767

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION - ICU TEST ASTM D4767

		F	ailure	Photo
MOHR'S CIRCLES				
10000 8000 4000 0 2 4 0 2 4 6 8 10 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<u>i i i</u> 12 14 16			
Test Results			-5.0	
φ, degrees			25.3	
C, USI Sample Description			2000	
Sample Number			A-F	
Sample Depth (feet)			A-F 0	
Sample Depth (feet) Material Description	dark yellowish	brown	A-F 0 Sandy	/ lean CLAY
Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage	dark yellowish	brown	A-F 0 Sandy	y lean CLAY
Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress	dark yellowish	brown 1000	A-F 0 Sandy 2000	y lean CLAY 4000
Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch)	dark yellowish	1000 4.990	A-F 0 Sandy 2000 4.940	y lean CLAY 4000 4.890
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch)	dark yellowish	1000 4.990 2.402	A-F 0 Sandy 2000 4.940 2.414	y lean CLAY 4000 4.890 2.414
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%)	dark yellowish	1000 4.990 2.402 11.8	A-F 0 Sandy 2000 4.940 2.414 11.8	y lean CLAY 4000 4.890 2.414 11.8
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf)	dark yellowish	1000 4.990 2.402 11.8 116.9	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9	y lean CLAY 4000 4.890 2.414 11.8 116.9
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2	y lean CLAY 4000 4.890 2.414 11.8 116.9 72.2
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2	y lean CLAY 4000 4.890 2.414 11.8 116.9 72.2
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011	y lean CLAY 4000 4.890 2.414 11.8 116.9 72.2 0.2977
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800	4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf) Strain at failure (%)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460 1.54	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800 2.33	y lean CLAY 4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940 10.33 12250
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf) Strain at failure (%) Deviator Stress and Fail (psf)	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460 1.54 9460	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800 2.33 10820	y lean CLAY 4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940 10.33 13950 24 (stagod)
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf) Strain at failure (%) Deviator Stress and Fail (psf) Geocon Consultants, Inc. 3160 Gold Valley Drive Suite 800	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460 1.54 9460 ngth - U	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800 2.33 10820 JU Tes	4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940 10.33 13950 st (staged)
Sample Description Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf) Strain at failure (%) Deviator Stress and Fail (psf) Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Bancho Cordova California 95742	dark yellowish	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460 1.54 9460 ngth - U	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800 2.33 10820 JU Tes	4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940 10.33 13950 st (staged)
Sample Description Sample Number Sample Depth (feet) Material Description Initial Conditions at Start of Stage Sample ID (psf), minor principal stress Height (inch) Diameter (inch) Moisture Content (%) Dry Density (pcf) Saturation (%) Shear Test Conditions Strain Rate (%/min) Major Principal Stress at Failure (psf) Strain at failure (%) Deviator Stress and Fail (psf) Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742 GEOCON Telephone: (916) 852-9118	dark yellowish dark yellowish Triaxial Shear Strer Project: Cemex Eliot Location: Alameda Cou Number: S1264-05-01	1000 4.990 2.402 11.8 116.9 72.2 0.2937 10460 1.54 9460 ngth - U	A-F 0 Sandy 2000 4.940 2.414 11.8 116.9 72.2 0.3011 12800 2.33 10820 JU Tes	4000 4.890 2.414 11.8 116.9 72.2 0.2977 17940 10.33 13950 st (staged)

Hydraulic Conductivity (ASTM D5084)

,	e:	Cemex Eliot										
Project Numb	per:	S1264-05-01		Cell Pressu	ıre (psi)		72					
Beginning Te	st Date:	1/6/2017		In Pressure	e (psi)		70					
Ending Test [Date:	1/7/2017		Out Pressu	ire (psi)		70					
Sample ID:		TP4-A-F		Burette are	a (cm ²)		0.872					
Sample Desc	ription: d. y	. brn. Lean C	LAY	Burette Co	rrection (cm/r	nl)	1.147					
Estimated Sp	ecific Gravity:		2.67									
					AVG		AVG					
		1	2	3	(inches)		(cm)					
Initial Height ((in.)	3.000	3.000	3.000	3.00		7.62					
Final Height (in.)	3.069	3.062	3.049	3.06		7.77					
Initial Diameter	er (in.)	2.409	2.406	2.409	2.41		6.12					
Final Diamete	er (in.)	2.458	2.463	2.456	2.46		6.25					
Initial Area				2	4.55		29.38					
Initial Volume	e (ft ³)	0.00791	Final Volur	ne (ft ³)	0.00841							
Initial Volume	e (cm³)	223.9	Final Volur	ne (cm³)	238.1							
	Weight	Moisture	Wet Density	Dry Density	Void Ratio		Saturation	n				
	(grams)	Content (%)	(pcf)	(pcf)			(%)					
Initial	459.46	11.7	128.1	114.7	0.453		69.0					
Final	493.07	19.9	129.3	107.8	0.545		97.3					
Dry	411.37											
_			.	_					0.17		Outflow	_
Beginning	End Date &	Elapsed	Burette	Burette In	Pressure	.	H1	H2	Outflow	Inflow	to Inflow	Permeability
Date & Lime	ıme	ı ime (sec.)	Out (ml)	(ml)	Head (cm)	Jradient	(cm)	(cm)	(ml)	(ml)	Ratio	(cm/s)
1/6/17 9:04 AM		4 4 4 0	23.55	1.55	-	3.3	25.2	<u></u>	0.00	0.00	4.00	
	1/6/17 9:23 AM	1,140	22.95	2.15	-	3.1	22.0	23.9	0.60	0.60	1.00	5.56E-06
1/6/17 9:23 AM	1/6/17 0:46 AM	1,140	22.95	2.15	-	20	23.9	22.2	0.70	0.75	0.03	5 02E-06
1/6/17 0-46 AM	1/6/17 9:46 AM	3,500	22.25	2.90		2.9	22.2	22.2	0.70	0.75	0.93	5.92E-00
1/6/17 9.46 Alvi	1/6/17 12:22 DM	9 420	18 90	2.30 6.40		1.0	22.2	143	3 35	3 50	0.96	5 25E-06
1/7/17 11:08 AM	1/0/17 12.23 PW	11 940	24 10	1.05		3.5	26.4	14.5	0.00	5.50	0.30	J.2JL-00
1/1/1/ 11:00 AM	1/7/17 11:52 AM	2 640	22 70	2 45	-	3.0	20.1	23.2	1 40	1 40	1 00	5 55E-06
1/7/17 11:52 AM		14 580	22.70	2 45	-	3.0	23.2	20.2				0.002 00
	1/7/17 12:34 PM	2,520	21.52	3.60	-	2.7	20.2	20.6	1.18	1.15	1.03	5.48E-06
1/7/17 12:34 PM		17.100	21.52	3.60	-	2.7	20.6					
	1/7/17 1:21 PM	2,820	20.40	4.72	-	2.4		18.0	1.12	1.12	1.00	5.35E-06
1/7/17 1:21 PM	•	19,920	20.40	4.72	-	2.4	18.0					
	1/7/17 1:58 PM	2,220	19.62	5.50	-	2.1		16.2	0.78	0.78	1.00	5.34E-06
	-	22,140										
				Average P	ermeability (cm/s):						5.36E-06
				Permeabilit	ty @ 20 ⁰ C							5.09E-06
					•							
Notes:	spec remolde	d to 90% of A	STM D155	7 at +2% op	otimum moistu	ure						
Notes: Average temp	spec remolde	d to 90% of A $g test ^{0}C =$	<u>STM D155</u> 22.2	7 at +2% op	timum moistu	ure						
Notes: Average temp Tap water utli	spec remolde perature during ized as permea	d to 90% of <i>A</i> g test ⁰ C = ant	ASTM D155 22.2	7 at +2% op	btimum moistu	ure		Poviow	od Pyr 17			
Notes: Average temj Tap water utli Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of A g test ⁰ C = ant	ASTM D155 22.2	7 at +2% op Calculated	btimum moistu By: MR	ure	F	Review	ed By: JZ			
Notes: Average temp Tap water utli Tested By:	spec remolde perature during ized as perme M. Repking	$\frac{d \text{ to } 90\% \text{ of } A}{3 \text{ test}^{0}C} =$	ASTM D155 22.2	7 at +2% op Calculated	timum moistu By: MR	ure	F	Review	ed By: JZ			
Notes: Average temp Tap water utli Tested By:	spec remolde perature during ized as perme M. Repking	d to 90% of A g test ${}^{0}C =$ ant	<u>STM D155</u> 22.2	7 at +2% op Calculated	by: MR	ure	F	Review	ed By: JZ			
Notes: Average tem ₁ Tap water utli Tested By:	spec remolde perature durinç ized as perme: M. Repking	d to 90% of A g test ⁰C = ant	<u>STM D155</u> 22.2 Pe	7 at +2% op Calculated	bitimum moistu By: MR y vs elapse	ure ed time	F	Review	ed By: JZ			
Notes: Average temj Tap water utli Tested By:	spec remolde perature durinç ized as permer M. Repking	d to 90% of A g test ⁰ C = ant	STM D155 22.2 Pe	7 at +2% op Calculated	biimum moistu By: MR y vs elaps	ed time	F	Review	ed By: JZ			
Notes: Average tem Tap water utli Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>A</i> 1 test ⁰ C = ant	STM D155 22.2 Pe	7 at +2% op Calculated rmeabilit	By: MR	ed time	F	Review	ed By: JZ			
Notes: Average temj Tap water utli Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> 9 test ^o C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	By: MR	ed time	F	Review	ed By: JZ			
Notes: Average temp Tap water utli Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> 9 test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	By: MR	ed time		Review	ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> 9 test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	bitimum moistu By: MR y vs elapse	ed time	F	Review	ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>A</i> g test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	bitimum moistu By: MR y vs elapsu	ed time	F	Review	ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permer M. Repking	d to 90% of <i>A</i> 1 test ^o C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	y vs elaps	ed time	F		ed By: JZ			
Notes: Average tem, Tap water utli Tested By:	spec remolde perature durinç ized as permer M. Repking	d to 90% of <i>A</i> g test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated	By: MR		F		ed By: JZ			
Notes: Average tem, Tap water utli Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> 9 test ^o C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated rmeability	by: MR	ed time	F		ed By: JZ			
Notes: Average tem, Tap water util Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> g test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated rmeability	y vs elapso	ed time	F		ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>P</i> g test ⁰ C = ant	Pe	7 at +2% op Calculated rmeability	y vs elapso	ed time	F	Review	ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>I</i> g test ⁰ C = ant	Pe	7 at +2% op Calculated rmeability	y vs elapso	ed time	F		ed By: JZ			
Notes: Average tem, Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of A 1 test ^o C = ant	Pe	7 at +2% op Calculated	y vs elaps	ed time	F		ed By: JZ			
Notes: Average tem Tap water uti Tested By: ber ber ber ber	spec remolde perature during ized as permer M. Repking	d to 90% of A g test ^o C = ant	Pe	7 at +2% op Calculated	y vs elapso	ed time	F	Review	ed By: JZ			
Notes: Average tem, Tap water uti Tested By: (cm/sec)	spec remolde perature during ized as permer M. Repking	d to 90% of <i>A</i> g test ⁰ C = ant	Pe	7 at +2% op Calculated rmeability	bitimum moistu By: MR y vs elapsu y vs elapsu	ed time	F		ed By: JZ			
Notes: Average tem, Tap water util Tested By: bermeapilit, (cm/sec)	spec remolde perature during ized as permea M. Repking	d to 90% of <i>A</i> g test ⁰ C = ant	NSTM D155 22.2 Pe	7 at +2% op Calculated rmeability	y vs elapso	ed time	F		ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>I</i> g test ⁰ C = ant	Pe	7 at +2% op Calculated rmeability	y vs elapso		F		ed By: JZ			
Notes: Average tem Tap water uti Tested By:	spec remolde perature during ized as permea M. Repking	d to 90% of <i>I</i> g test ⁰ C = ant	STM D155 22.2 Pe	7 at +2% op Calculated rmeability	y vs elapso		F		ed By: JZ			25,000

Geo-Logic Associates 143E Spring Hill Drive Grass Valley, CA 95945 USA T+1 530 272 2448 F+1 530 272 8533 www.geo-logic.com

DATE: January 26, 2017

TO: John Pfeiffer GEOCON Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 **JOB NO:** AU17.1011.00 **LAB LOG:** 4148.0

e-mail: pfeiffer@geoconinc.com

RE: Lab Report: Cemex Eliot / Project No. S1264-05-01

Enclosed are re	esults for: Samples Received - January 16, 2017	
Code	Item	Quantity
2600	Moisture Density Curve, Mod. 4" - ASTM D-1557	1
1650	Direct Shear CD / pt., 2.5 - 4" - ASTM D-3080	3
1750	Large Box, 12" x 12" add / pt -	3
2250	Hydraulic Conductivity-Flex-wall, 2-4" - ASTM D-5084	1
3350	Remold fee, 2-3" dia -	1

4650 Bulk Sample Preparation & Processing, per hr. -

Thank you for consulting Geo-Logic Associates for your material testing requirements. We look forward to working with you again. If you have any questions or require any additional information, please call us at 1-530-272-2448. This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job. This report shall not be reproduced except in full without written approval of Geo-Logic Associates.

Sincerely,

Prepared By: Kindra Hillman Laboratory Manager

1

Reviewed By: Kenneth R. Criley Technical Director

MOISTURE / DENSITY RELATIONSHIPS

Test Report ASTM D - 1557

	GEOCO	<u> N Con</u> sultants, Inc	•	<u>A</u> U17.1011	.00	J	414
ct Name:						Report Date:	. 10. 00
Ceme	ex Eliot/ P	roject No. S1264-0	5-01			January	19, 20
140 -				100 % Satu	ration Curve	`	
138 -				Specific Gra	vity app. 2.	7 7	
136 -		\ \ \					
134 -							
104							
132 -		_					
130 -							
128 -							
126 -							
		4					
124 -	-						
122 -							
120 -							
118 -							
110							
116 -							
114 -							
112 -	-		\				
110 -							
0) 2	4 6 8 10	12 14 16 18 20 22	24 26 28	30 32	34 36	38 4
			Water Content, %	6			
			<u> </u>	<u> </u>		1	
lodi	Lab	Sample	Description	Maxi	mum	Optimum Conte	Water
Symbol	Lab No.	Sample Identification	Description	Maxi Dry D	mum ensity	Optimum Conte	Water nt
Symbol	Lab No.	Sample Identification	Description	Maxi Dry D pcf	mum ensity kg / m ³	Optimum Conter %	Water nt
Symbol	Lab No. 4148A	Sample Identification	Description Brown Sandy Silty, Clay with Gra	Maxi Dry D pcf	mum ensity kg / m ³ 2134	Optimum Conte % 8.5	Water nt
Symbol	Lab No. 4148A	Sample Identification TP 7/8 (3-12)	Description Brown Sandy Silty, Clay with Gra	Maxi Dry D pcf Ivel 133.2	mum ensity kg / m ³ 2134	Optimum Conte % 8.5	Water nt
Symbol	Lab No. 4148A	Sample Identification TP 7/8 (3-12)	Description Brown Sandy Silty, Clay with Gra	Maxi Dry D pcf Ivel 133.2	mum ensity kg / m ³ 2134	Optimum Conte % 8.5	Water nt
Symbol	Lab No. 4148A	Sample Identification TP 7/8 (3-12)	Description Brown Sandy Silty, Clay with Gra	Maxi Dry D pcf Ivel 133.2	mum ensity kg / m ³ 2134	Optimum Conte % 8.5	Water
Symbol	Lab No. 4148A	Sample Identification TP 7/8 (3-12) Correcte	Description Brown Sandy Silty, Clay with Gra d Values For Oversized Partic	Maxi Dry D pcf 133.2 :les, per ASTM	mum ensity kg / m ³ 2134 D-4718	Optimum Conte % 8.5	Water
Symbol	Lab No. 4148A 4148A	Sample Identification TP 7/8 (3-12) Corrected with 22.9	Description Brown Sandy Silty, Clay with Gra d Values For Oversized Partic Percent +#4 Gravel, the maximum	Maxi Dry D pcf avel 133.2 :les, per ASTM	mum ensity kg / m ³ 2134 D-4718 139.9	Optimum Conte % 8.5	Water
Symbol	Lab No. 4148A 4148A Note:	Sample Identification TP 7/8 (3-12) Correcte with 22.9 The test was conduct	Description Brown Sandy Silty, Clay with Gra d Values For Oversized Partic Percent +#4 Gravel, the maximum ted as method A with 0 percent reta	Maxi Dry D pcf avel 133.2 Cles, per ASTM n Dry Density = ined on the no. 4	mum ensity kg / m ³ 2134 D-4718 139.9 sieve (minus	Optimum Conte % 8.5 6.5 s #4)	Water
Symbol	Lab No. 4148A 4148A Note:	Sample Identification TP 7/8 (3-12) Correcte with 22.9 The test was conduct	Description Brown Sandy Silty, Clay with Gra definition Brown Sandy Silty, Clay with Gra definition	Maxi Dry D pcf avel 133.2 :les, per ASTM n Dry Density = ined on the no. 4	mum ensity kg / m ³ 2134 D-4718 139.9 sieve (minus	Optimum Conte % 8.5 6.5 s #4)	Water
Symbol	Lab No. 4148A 4148A Note:	Sample Identification TP 7/8 (3-12) Corrected with 22.9 The test was conduct based upon accepted in	Description Brown Sandy Silty, Clay with Gra ed Values For Oversized Partic Percent +#4 Gravel, the maximum ted as method A with 0 percent reta dustry practice as well as the test method	Maxi Dry D pcf avel 133.2 :les, per ASTM n Dry Density = ined on the no. 4 :	mum ensity kg / m ³ 2134 D-4718 139.9 sieve (minus	Optimum Contel % 8.5 6.5 s #4)	Water
Symbol 2010	Lab No. 4148A 4148A Note:	Sample Identification TP 7/8 (3-12) Correcte with 22.9 The test was conduct based upon accepted in	Description Brown Sandy Silty, Clay with Gra ed Values For Oversized Partic Percent +#4 Gravel, the maximum ted as method A with 0 percent reta dustry practice as well as the test method supplied and tested for the above reference Percent with Date:	Maxi Dry D pcf avel 133.2 cles, per ASTM n Dry Density = ined on the no. 4 flisted. These result ced job	mum ensity kg / m ³ 2134 D-4718 139.9 sieve (minus ts apply only to	Optimum Contel % 8.5 6.5 s #4)	Water

LARGE SCALE DIRECT SHEAR REPORT

Internal Shear D-3080 Modified

> Report Date: January 24, 2017

Page 1 of 2

LARGE SCALE DIRECT SHEAR REPORT

Internal Shear

D-3080 Modified

Geo-Logic

HYDRAULIC CONDUCTIVITY

REPORT

L : Labexcel \PROJECTS \ GEOCON Consultants \ 4148A-txk	Print Date:	Entered By:	Reviewed By:	LSN:
DCN: TXK-QC-GRAPH (rev. 11/20/12)	01/26/17	KH	krc	4148A

APPENDIX B

MATERIAL PROPERTIES

BH2013-01							
· · · · ·					Wet	Dry	. 8
8200 Control 1	2.5			Pocket Pen.	Density	Density	1000
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
01-2 tube 1	58.4	29	29.4	1.33	119.2	90.3	32.1
01-2 tube 2	68.3	28.9	39.4	4.5+	119	90	32.2
BH2013-03							
Brizoro do			1		Wet	Dry	1
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
03-1 tube 3				2.81	128		
BH2013-04							
DILLOID OT					Wet	Dry	1
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
04-2 tube 1				1.83			
04-2 tube 2	28.8	16.8	12	3.11	118.3	106	12
RH2012-05							
512013-03				and the second	Wet	Dry	
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
05-2 tube 1				3.19			
BH2013-06					Wot	Dev	
				Bookat Dan	Doneity	Doneity	
Comple #		DI	DI	(tef)	(ncf)	(ncf)	Mainture %
Sample #	LL	PL	PI	(131)	(pci)	(pci)	Moisture, %
06-1 tube 2				3.30	110		
BH2013-07					anologi	1.01.22	
				Desket Des	Wet	Dry	
0.0000000000000000000000000000000000000				Pocket Pen.	Density	Density	100000000000000000000000000000000000000
Sample #	LL	PL	PI	(tst)	(pct)	(pct)	Moisture,%
07-2 tube 2				3.13	119		
BH2013-09							
					Wet	Dry	
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
09-1 tube 1				2.81	128		
09-2 tube 1				2.67			
RH2012-10A							
DIIZOISIUA				1	Wet	Dry	
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
10A-1 tube 2				4.29	122		
10A-2 tube 3				4.38	114		
10A-3 tube 1				2.75	101		
					~		
BH2013-10B			1	-	Wet	Drv	1
				Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture.%
10B-2 tube 2	34.1	19.3	14.8	2.92	129.6	106.8	21.4

BH2013-11							
	(Wet	Dry	
	1 2.5			Pocket Pen.	Density	Density	1.000
Sample #		PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
11-1 tube 1		1.1.1.1		4.5	127	2	
5110040 40							
BH2013-12	·		,		Wot	Dev	-
	í]	Dockot Don	Doneity	Daneity	
	(<mark>.</mark> .			/taf)	(nof)	(nof)	and interest Of
Sample #		PL	PI	(151)	(pci)	(pci)	Moisture, 70
12-1 tube 1	00.0	00	10.0	1.80	104.0	00.6	06.1
12-2 tube 2	39.3	20	19.3	2.4/	124.3	98.0	20.1
12-4 tube 1				2.30	120		
BH2013-13	ſ						
					Wet	Dry	
	1			Pocket Pen.	Density	Density	
Sample #	LL	PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
13-1 tube 1				3.21		0	i
13-2 tube 3	46.7	21.7	25	2.08	115	98.6	16.6
13-3 tube 1				1	117	8	
13-4 tube 3				3.83	120	· · · · · ·	
2112010 10							
BH2013-16	<u> </u>		,		Wet	Dry	1
	í]	Pockot Pen	Doneity	Doneity	L
Complete H				(tef)	(nof)	(nof)	Maintum 9/
Sample #	<u> </u>			(131)	101	(per)	Moisture, /o
10-1 (UD9-1				4.19	121		
BH2013-17	L						
Differio I.	<u> </u>			· · · · · · · · · · · · · · · · · · ·	Wet	Dry	1
	(10.000		Pocket Pen.	Density	Density	
Sample #		PI	PI	(tsf)	(pcf)	(pcf)	Moisture,%
17-1 tube 2				1,83	119	10-14	motorare
17-3 tube 1	i	<u> </u>	+	2.97	98		
17-4 tube 3	47.1	21,9	25.2	3,28	128	105	23
II-T DAVE 2							
BH2013-18							
				and the part of	Wet	Dry	
	(Pocket Pen.	Density	Density	
Sample #		PL	PI	(tsf)	(pcf)	(pcf)	Moisture,%
18-1 tube 1				3.32	90	6	
BH2013-19	L		,	,	Wat	- Hay	
	1		1	-	Wet	Dry	
	1 and a			Pocket Pen.	Density	Density	
Sample #		PL	PI	(tst)	(pct)	(pct)	Moisture,%
19-1 tube 2				3.39	117	<u>8</u> 8	
0110010.01	í.						
BH2013-21					Wet	Dry	1
1 1	1		ļ	Pocket Pen.	Density	Density	
Sample #		DI	PI	(tsf)	(ncf)	(pcf)	Moisture %
Of 1 tube 1				3 34	102	10-01	moiorare,
21-2 tube 1	·		+	3.21	109		

Page II-55

LOCATION: B-1 at 32 feet

SAMPLE:	CLAYEY	SAND with	GRAVEL,	brown
-				

TEST TYPE: Consolidated	d Drained	SPECIMEN	Α	В	С
		DRY DENSITY (psf)	127.1	123.7	123.4
RATE OF SHEAR (in/min)): 0.00099	INITIAL WATER CONTENT (%)	10.1	10.1	10.1
		FINAL WATER CONTENT (%)	11	13.7	11
FRICTION ANGLE:	27	NORMAL STRESS (psf)	1000	3000	5000
		MAXIMUM SHEAR (psf)	1785	2373	3819
COHESION (psf):	1,100				

DIRECT SHEAR TEST

LOCATION: B-1 at 37 feet

SAMPLE:	CLAYEY SAND with GRAVEL,	red-brown

SPECIMEN	А	В	С
DRY DENSITY (psf)	125.8	113.8	122.3
INITIAL WATER CONTENT (%)	9.2	9.2	9.2
FINAL WATER CONTENT (%)	11.4	11	10.4
NORMAL STRESS (psf)	2500	4500	7000
MAXIMUM SHEAR (psf)	1969	3353	5354

DIRECT SHEAR TEST

APPENDIX C SLOPE STABILITY ANALYSES

We used the computer program SLOPE/W Version 7.22 distributed by Geo-Slope International to perform slope stability analyses. SLOPE/W uses conventional slope stability equations and a two-dimensional limit-equilibrium method to calculate the factor of safety against failure. For our analyses, the Bishop's Method with a circular failure mechanism was used.

The computer program searches for the critical failure surface based on user-provided input parameters. For a circular failure search, a linear search of entry and exit locations is specified and the computer searches for the critical failure slip surface. Graphical representations of the slope stability analyses, potential critical failure surfaces, and parameters used for each analysis are presented on the following pages.

Distance (s. 1000)

000)

Kane Analysis Confirmation - Seismic

B) Name: Native Gravel Model: Mohr-Coulomb Unit Weight: 134 pcf Cohesion: 200 psf Phi: 45 °

